首页|基于玻璃化转变玉米变温干燥工艺优化及预测模型建立

基于玻璃化转变玉米变温干燥工艺优化及预测模型建立

扫码查看
为研究基于玻璃化转变的变温干燥工艺对玉米的干燥效果,在不同初始干燥温度、降水幅度及升温幅度条件下,探究最佳变温干燥工艺参数并建立数学模型,与神经网络建立的预测模型作对比.结果表明,以裂纹率为响应指标,得出最佳工艺参数组合为46.11 ℃、4.99%、9.63 ℃,此时裂纹率为 12.02%.利用PSO-BP(Particle swarm optimization-Back propagation)神经网络构建3输入1输出的玉米变温干燥裂纹率的预测模型,网络拓扑结构为3-9-1,此时模型的R2为0.9834,与响应面法(Response surface methodology,RSM)拟合的二次回归模型拟合优度(R2=0.9248)相比,PSO-BP神经网络构建的模型预测精度优于RSM.因此,PSO-BP模型较RSM有更高的建模效率,可精确地预测干燥后玉米裂纹率,为玉米变温智能干燥过程及干后品质提供较优的解决方案及操作条件提供理论参考.
Optimization and Predictive Modeling of Variable Temperature Drying Process on the Basis of Glass Transition Maize
In order to study the drying effect of variable temperature drying process based on glass transition on maize,the optimal parameters of variable temperature drying process were explored under different initial drying temperatures,precipitation amplitudes,and heating amplitudes,and a mathematical model was established to compare with the prediction model established by neural networks.The results showed that the optimal process parameter combination based on crack rate as the response index was 46.11 ℃,4.99%,and 9.63 ℃,with a crack rate of 12.02%.Using Particle swarm optimization-Back propagation(PSO-BP)neural network to construct a prediction model for maize temperature dependent drying crack rate with 3 inputs and 1 output,the network topology is 3-9-1,and the R2 of the model is 0.9834.Compared with the quadratic regression model fitted by response surface methodology(RSM)(R2=0.9248),the prediction accuracy of the model constructed by PSO-BP neural network is better than that of RSM.Therefore,the PSO-BP model has higher modeling efficiency than RSM,and can accurately predict the crack rate of maize after drying.It provides a better solution and theoretical reference for the intelligent drying process of maize at variable temperature and the quality after drying.

maizevariable temperature dryingglass transitionprocess optimizationpredictive modeling

田高帅、吴建章、朱文学、陈鹏枭、蒋萌蒙、代峥峥

展开 >

河南工业大学粮食和物资储备学院,河南郑州 450001

河南工业大学粮油食品学院,河南郑州 450001

玉米 变温干燥 玻璃化转变 工艺优化 预测模型

校级创新基金支持项目河南省科技攻关计划

31420014222102110367

2024

食品科技
北京市粮食科学研究所

食品科技

CSTPCD北大核心
影响因子:0.622
ISSN:1005-9989
年,卷(期):2024.49(2)
  • 26