首页|基于DCGAN数据增强的樱桃番茄可溶性固形物含量光谱检测方法

基于DCGAN数据增强的樱桃番茄可溶性固形物含量光谱检测方法

扫码查看
针对樱桃番茄在实际检测中样品数不足的特点,本研究提出一种深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)模型以同时扩充光谱数据及可溶性固形物含量(soluble solids content,SSC)标签数据,并建立一维卷积神经网络回归(one dimensional-convolutional neural networks regression,1D-CNNR)模型以提高模型的预测精度和泛化能力。为了比较,分别建立偏最小二乘回归(partial least squares regression,PLSR)模型和支持向量机回归(support vector regression,SVR)模型。将原始80 个样品数据集、1 000 个样品的DCGAN扩充数据集和1 080 个样品的合并数据集,分别结合1D-CNNR、SVR及PLSR进行建模与预测。为了进一步验证模型的泛化能力,一批新的总数为40 个样品的樱桃番茄数据作为上述3 个模型的新测试集。结果显示,使用合并数据集划分所得校正集进行1D-CNNR建模后,模型为最优的SSC回归检测模型。此时1D-CNNR面向合并样品测试集的预测准确率最高,预测相关系数rp=0。980 7,均方根误差RMSEp=0。192 9;与SVR与PLSR对比,1D-CNNR面向新的40 个样品数据集的预测准确率也最高,其rp=0。963 8,RMSEp=0。224 5。本研究可为有效准确检测樱桃番茄的可溶性固形物含量提供一种新思路。
Spectroscopic Method for Detection of Soluble Solid Content in Cherry Tomato Using Deep Convolutional Generative Adversarial Network-Based Data Augmentation
Considering insufficient sample numbers in the practical detection of soluble solid content(SSC)in cherry tomato,we proposed a deep convolutional generation adversarial network(DCGAN)model to expand spectral data and SSC label data,and established a one-dimensional convolutional neural network regression(1D-CNNR)model to improve the prediction accuracy and generalization capability of the DCGAN model.For comparison,a partial least squares regression(PLSR)model and a support vector regression(SVR)model were established.The original dataset of 80 samples,the DCGAN extended dataset of 1 000 samples and the combined dataset of 1 080 samples were separately used for modeling and prediction with 1D-CNNR,SVR and PLSR.To further verify the generalization capability of the models,a new batch of 40 cherry tomato samples was used as a new test set.The results showed that the 1D-CNNR model based on the calibration set separated from the combined dataset was the optimal regression model for SSC detection.The prediction accuracy of the model for the test set from the combined dataset was the highest,with correlation coefficient of prediction(rp)of 0.980 7,and root mean square error of prediction(RMSEp)of 0.192 9.The prediction accuracy of the 1D-CNNR model for the new test set of 40 samples was also the highest,with rp of 0.963 8 and RMSEp of 0.224 5.This study provides a new idea for the accurate determination of the SSC in cherry tomato.

cherry tomatoessoluble solids contentvisible-near-infrared spectroscopydeep convolutional generative adversarial networksone-dimensional convolutional neural networks

吴至境、刘富强、李志刚、陈慧

展开 >

华东交通大学机电与车辆工程学院,江西 南昌 330013

樱桃番茄 可溶性固形物含量 可见-近红外漫反射光谱 深度卷积生成对抗网络 一维卷积神经网络

2025

食品科学
北京食品科学研究院

食品科学

北大核心
影响因子:1.327
ISSN:1002-6630
年,卷(期):2025.46(2)