首页|基于高光谱特征融合的榛子霉变检测方法研究

基于高光谱特征融合的榛子霉变检测方法研究

扫码查看
为实现对榛子霉变的快速无损检测,研究将光谱特征与纹理特征融合并结合机器学习算法建立榛子霉变检测模型.采集400~1 000 nm的榛子样本高光谱图像,对样本的原始光谱使用标准正态变量变换法进行预处理,采用蜣螂优化算法、粒子群优化算法和连续投影算法3种特征波长选择方法对光谱进行特征选择;利用主成分分析法对高光谱图像进行降维,根据图像的贡献大小选择样本的最优主成分图像,结合灰度共生矩阵法提取样本4个角度上的5个纹理特征参数.分别基于样本光谱特征、纹理特征、光谱特征与纹理特征融合三类数据结合K最近邻算法构建榛子霉变检测模型.实验结果表明,基于蜣螂优化算法选择的特征光谱与纹理特征融合并结合K最近邻算法建立的模型效果最好,训练集和测试集准确率分别为99.20%和98.34%,实现了榛子霉变的快速无损检测.
Detection method of hazelnut mildew based on hyperspectral feature fusion
To realize the rapid and non-destructive detection of hazelnut mildew,the study fused spectral features with texture fea-tures,combining machine learning algorithms to establish a hazelnut mildew detection model.The hyperspectral images of hazelnut samples in the range of 400-1 000 nm were collected.The original spectrums were preprocessed with the standard normal variable transformation method.Dung beetle optimizer algorithm,particle swarm optimization algorithm,and successive projections algorithm were adopted to se-lect characteristic wavelengths.The hyperspectral images were reduced the dimensionality with principal component analysis method,and the optimal principal component images of the samples were selected according to the contribution size of the images,utilizing the gray-lev-el co-occurrence matrix method to extract five texture feature parameters on the four angles of samples.The hazelnut mildew detection K-nearest neighbor model was built based on spectral features,texture features,spectral features combined with texture features.Experimen-tal results indicated that the best model was the K-nearest neighbor model under the fusion of texture features and spectral features selected by dung beetle optimizer algorithm.The accuracy of the model training set and test set were 99.20%and 98.34%respectively,realizing rapid and non-destructive detection of hazelnut mildew.

hyperspectralhazelnutmildewnon-destructive detectionfeature fusiondung beetle optimization algorithm

张冬妍、毛思雨、杨子健、陈诺、吴晨旭、马苗源

展开 >

东北林业大学计算机与控制工程学院,黑龙江哈尔滨,150040

高光谱成像 榛子 霉变 无损检测 特征融合 蜣螂优化算法

2025

食品与发酵工业
中国食品发酵工业研究院 全国食品与发酵工业信息中心

食品与发酵工业

北大核心
影响因子:0.761
ISSN:0253-990X
年,卷(期):2025.51(2)