首页|高光谱技术结合改进LSSVM的大米脂肪酸检测方法

高光谱技术结合改进LSSVM的大米脂肪酸检测方法

扫码查看
目的:解决食品企业现有大米品质检测方法存在的准确性低和效率差等问题。方法:基于高光谱数据采集系统,提出一种结合改进细菌觅食算法和最小二乘支持向量机的贮藏大米品质快速无损检测方法。通过改进的细菌觅食算法对最小二乘支持向量机超参数(正则化参数和核参数)进行寻优,实现贮藏大米品质的快速无损检测。通过试验分析其性能。结果:所提方法可以实现贮藏大米脂肪酸含量的快速无损检测,决定系数为0。940 5,均方根误差为0。543 5,平均检测时间为1。12 s。结论:所提检测方法具有较高的检测性能,可用于大米品质的鉴别与检测。
Rice fatty acid detection method combining hyperspectral technology with improved LSSVM
Objective:To solve the problems of low accuracy and poor efficiency in the existing rice quality testing methods of food enterprises.Methods:Based on a hyperspectral data acquisition system,a fast and non-destructive detection method for stored rice quality was proposed,which combined an improved bacterial foraging algorithm and least squares support vector machine.By applying the improved bacterial foraging algorithm,the hyperparameters(regularization parameter and kernel parameter)of the least squares support vector machine were optimized to achieve rapid and non-destructive detection of rice quality.its performance was analyzed through experiments.Results:The proposed method can achieve rapid and non-destructive detection of fatty acid content in stored rice,with a determination coefficient of 0.940 5,root mean square error of 0.543 5,and an average detection time of 1.12 seconds.Conclusion:The proposed detection method has high detection performance,which can be used for the identification and detection of rice quality.

ricefatty acidhyperspectral databacterial foraging optimization algorithmleast squares support vector machinerapid non-destructive testing

付娟娟、陈春茹、黄珍琳、孙峰

展开 >

潞安职业技术学院,山西 长治 046000

山西工商学院,山西 太原 030006

太原科技大学,山西太原 030024

大米 脂肪酸 高光谱数据 细菌觅食算法 最小二乘支持向量机 快速无损检测

山西省教育科学规划课题(十三五)山西省高等学校科研项目

GH-20125032022W234

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(2)
  • 20