首页|基于改进Alexnet的轻量化香蕉成熟度检测

基于改进Alexnet的轻量化香蕉成熟度检测

扫码查看
目的:获得轻量化Mini-Alexnet香蕉成熟度分级模型并应用于安卓移动端。方法:结合不同成熟度香蕉外部特征,对Alexnet网络模型进行结构调整,删除部分卷积层,并利用全局平均池化代替全连接层缩减模型参数和所需内存,且更换更大卷积核提取香蕉表皮全局特征,得到改进后轻量化 Mini-Alexnet网络模型,再将 Mini-Alexnet网络模型部署至安卓移动端APP,并验证其可行性和实用性。结果:Mini-Alexnet模型仅为11。6 MB,香蕉五等级成熟度判别准确率为97。76%,移动端APP香蕉成熟度自动判别系统本地图片识别模式、拍照识别模式、实时识别模式准确率分别为86。66%,79。33%,74。00%,平均准确率可达80%。结论:改进后 Mini-Alexnet模型占内存空间更小。
Lightweight banana ripeness detection based on improved Alexnet
Objective:To obtain a lightweight Mini-Alexnet banana ripeness grading model and apply it to Android mobile devices.Methods:Based on the external characteristics of bananas with different ripeness,the Alexnet network model was restructured,part of the convolutional layer was deleted,and the global average pooling was used instead of the full connection layer to reduce the model parameters and required memory.A larger convolutional kernel was replaced to extract the global characteristics of the banana skin to achieve an improved lightweight Mini-Alexnet network model.Then the Mini-Alexnet network model was deployed as Android mobile APP,and its feasibility and practicability were verified.Results:The Mini-Alexnet model was only 11.6 MB,and the identification accuracy rate of banana ripeness level 5 was 97.76%.The accuracy rate of local picture recognition mode,photo recognition mode and real-time recognition mode of the mobile APP banana ripeness automatic identification system was 86.66%,79.33%and 74.00%,respectively,with an average accuracy rate of 80%.Conclusion:The improved Mini-Alexnet model occupies less memory space.

bananaslightweight modelripenessmobile deviceAPP

蒋瑜、王灵敏

展开 >

广西农业职业技术大学,广西南宁 530007

桂林理工大学南宁分校,广西南宁 530001

香蕉 轻量化模型 成熟度 移动设备 APP

广西壮族自治区高等学校中青年教师科研基础能力提升项目广西壮族自治区高等学校中青年教师科研基础能力提升项目

2024KY12472020KY36006

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(5)