首页|鲸鱼算法改进极限学习机的葡萄酒品质评价研究

鲸鱼算法改进极限学习机的葡萄酒品质评价研究

扫码查看
[目的]解决近红外光谱中冗余信息过多的问题,提升葡萄酒品质评价模型的准确性,并构建一种快速无损的葡萄酒品质评价方法.[方法]运用竞争性自适应重加权采样法进行特征波长筛选,提出了鲸鱼算法改进极限学习机的葡萄酒品质评价模型.通过自适应重加权采样法等多种特征波长筛选方法,确定了最适用于葡萄酒光谱特征波长筛选的方法;针对ELM的初值权值与隐含层偏置选取问题,利用鲸鱼优化方法对初值权值与隐含层偏置进行优化,从而构建了 一种基于鲸鱼优化算法改进的极限学习机葡萄酒品质评价模型.[结果]与GA-ELM、PSO-ELM和传统的ELM 模型相比,WOA-ELM的准确率最高,达到了 0.944 5,GA-ELM的准确率为0.929 0,PSO-ELM的准确率为0.906 1,传统的ELM方法准确率为0.817 7.[结论]通过智能算法优化ELM模型的参数,可以有效提高葡萄酒品质评价的准确性.
Study on wine quality evaluation based on extreme learning machine improved by whale optimization algorithm
[Objective]In order to solve the issue of excessive redundant information in near-infrared spectroscopy,enhance the accuracy of wine quality evaluation models,a rapid and non-destructive method was established for wine quality evaluation.[Methods]A wine quality evaluation model was proposed based on competitive adaptive reweighting sampling method for feature wavelength screening and extreme learning machine improved by whale optimization algorithm.Various feature wavelength screening methods such as competitive adaptive reweighting sampling was used,and the most suitable method for wine spectral feature wavelength screening was determined.In response to the problem of initial value and hidden layer bias in ELM,the whale optimization method was used to optimize the initial value and hidden layer bias of ELM,and an wine quality evaluation model based on extreme learning machine improved by whale optimization algorithm was constructed.[Results]Compared with GA-ELM,PSO-ELM,and the traditional ELM model,the accuracy of WOA-ELM was the highest,reaching 0.944 5,which was better than GA-ELM(0.929 0),PSO-ELM(0.906 1)and traditional ELM(0.817 7).[Conclusion]The parameters of the ELM model optimized by intelligent algorithms can effectively improve the accuracy of wine quality evaluation.

near infrared spectroscopyextreme learning machinewhale optimization algorithmcharacteristic wavelengthcompetitive adaptive reweighted sampling

窦力、郑崴、李柏秋、李斐

展开 >

太原旅游职业学院,山西太原 030032

沈阳药科大学,辽宁沈阳 110015

山西大同大学,山西 大同 037009

中北大学,山西 太原 030051

展开 >

近红外光谱 极限学习机 鲸鱼优化算法 特征波长 竞争性自适应重加权采样法

山西省教育科学"十三五"规划课题

GH-22015402

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(6)
  • 10