首页|基于机器视觉的谷糙分离检测方法

基于机器视觉的谷糙分离检测方法

扫码查看
[目的]解决传统的谷糙分离机存在的人工检测精度差的问题,提高生产效率.[方法]提出了一种基于机器视觉的图像检测方法,通过不同图像算法的多级式递进融合,实现对谷糙的特征识别与分离.对采集到的图像进行ROI区域选定,并利用Retinex算法进行图像增强;使用Otsu算法对图像进行分割,再利用中值滤波与形态学相结合去除图像噪声;采用改进的Canny算法对二值图像进行边缘特征检测,结合Hough变换提取谷糙图像轮廓的位置信息;最后应用卡尔曼滤波对位置信息进行状态估计,得到分离位置最佳预测值的同时,减小位置偏移误差.[结果]系统的检测平均误差为3.14 mm,相比较滤波前减少1.82 mm,滤波误差平均标准差为0.8 mm.[结论]该方法能够有效检测谷糙特征信息并提高分离精度.
Grain and chaff separation detection method based on machine vision
[Objective]To solve the problem of poor manual detection accuracy of traditional grain and chaff separator and improve production efficiency.[Methods]An image detection method based on machine vision was proposed,which realized the feature recognition and separation of grain rough through multi-stage progressive fusion of different image algorithms.The acquired images were selected in the ROI region and enhanced by Retinex algorithm.The Otsu algorithm was used to segment the image,and then the median filtering wwas combined with morphology to remove the image noise.The improved Canny algorithm was used to detect edge features of binary images,and the position information of the contour of the valley rough image was extracted by combining the Hough transform.Finally,the state estimation of the position information was performed by using the Kalman filter,and the best predicted value of the separated position was obtained,while the position offset error was reduced.[Results]The average detection error of the system was 3.14 mm,a decrease of 1.82 mm compared to before filtering,and the average standard deviation of filtering error was 0.8 mm.[Conclusion]This method can effectively detect the grain rough feature information and improve the separation accuracy.

grain and chaff separationmachine visionimage processingfeature extraction

李欣、齐家敏、程昊、王炎春

展开 >

湖北文理学院机械工程学院,湖北襄阳 441025

湖北航宇嘉泰飞机设备有限公司,湖北襄阳 441025

谷糙分离 机器视觉 图像处理 特征提取

襄阳市科技局重点研发项目

2022ABH006488

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(6)
  • 8