首页|基于机器视觉的苹果表损智能检测系统设计

基于机器视觉的苹果表损智能检测系统设计

扫码查看
[目的]满足苹果外观品质和大小综合分级的现实需求,解决中国苹果人工分选效率低,分选设备结构复杂、成本高等问题.[方法]提出一种YOLOv5s-apple模型,在主干网络中引入Transformer模块和CBAM注意力模块,同时加入加权双向特征金字塔网络(Bi-FPN)改进颈部网络,并结合HALCON软件,利用自行设计的一种苹果表损智能检测系统进行表损分拣和大小分级.[结果]与原YOLOv5s模型相比,YOLOv5s-apple模型的mAP提升了 6.2%,检测系统的分拣分级准确率可达97.5%,试验系统的处理速度为5 s/个.[结论]试验系统可以有效地进行苹果分级分选.
Design of apple damage automatic detection system based on machine vision
[Objective]To meet the practical requirements for comprehensive grading based on the appearance quality and size of apples,and to address issues such as low efficiency of manual sorting,complex structure,and high cost of sorting equipment for Chinese apples.[Methods]A YOLOv5s-apple model was proposed.The transformer module and CBAM attention module were introduced into the backbone network,and the weighted Bidirectional feature pyramid network(Bi-FPN)was added to improve the neck network.Then,combined with HALCON software,a self-designed intelligent apple damage detection system was used to carry out damage sorting and size classification.[Results]The experimental results showed that compared with the original YOLOv5s model,the mAP of the YOLOv5s-Apple model was improved by 6.2%,and the accuracy of apple sorting system could reach 97.5%,the processing speed of the system was 5 s/apple.[Conclusion]The system can effectively carry out apple grading and sorting,and provide a reference for the intellectualization and low cost of Apple detection equipment.

applesortingnon-destructive testingdeep learningYOLOv5attention mechanisms

秦寅初、李涛、李旭、王美玲、谭治英

展开 >

常州大学机械与轨道交通学院,江苏常州 213164

河海大学机电工程学院,江苏常州 213200

中国科学院合肥物质科学研究所智能机械研究所,安徽合肥 230031

苹果 分选 无损检测 深度学习 YOLOv5 注意力机制

江苏省产业前瞻与关键核心技术重点项目

BE2021016-4

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(6)
  • 11