首页|基于近红外光谱的翡翠贻贝重金属铅污染识别

基于近红外光谱的翡翠贻贝重金属铅污染识别

扫码查看
[目的]通过近红外光谱技术解决贻贝重金属铅污染问题。[方法]应用近红外反射光谱结合模式识别的方法进行重金属铅污染检测。首先获得了在950~1 700 nm范围内的健康贻贝和重金属铅污染贻贝光谱数据,应用基于随机变量组合的变量重要性分析(variable importance analysis based on random variable combination,VIAVC)波段选择算法对光谱数据降维,筛选最佳波段子集。针对检测健康贻贝和重金属铅污染贻贝是一个不平衡的分类问题,研究探索一种基于万有引力的固定半径最近邻(gravitational fixed radius nearest neighbor,GFRNN)方法用于贝类重金属铅污染识别。[结果]相较于传统的K最近邻法、固定半径近邻法和支持向量机算法,研究提出的VIAVC-GFRNN方法在检测重金属铅污染方面表现出更优异的性能,并且不受样本不平衡率的影响。VIAVC-GFRNN模型的接收者操作特征曲线下面积值达到了0。988 6,检测精度和几何均值均达99。17%。[结论]近红外光谱结合模式识别方法在检测贻贝中铅污染方面具有很大的潜力。
Identification of heavy metal Pb pollution in Perna viridis based on near-infrared spectroscopy
[Objective]Addressing the heavy metal lead pollution in oysters using near-infrared spectroscopy technology.[Methods]This study proposed the use of near-infrared reflectance spectroscopy combined with pattern recognition for detecting Pb contamination.Initially,spectral data of healthy mussels and Pb-contaminated mussels in the range of 950~1 700 nm were collected.The wavelength selection algorithm of variable importance analysis based on the random variable combination(VIAVC)was utilized to reduce the dimensionality,and selected the optimal subset of wavelengths.Considering the detection of healthy mussels and Pb-contaminated mussels as an imbalanced classification problem,the gravitational fixed radius nearest neighbor(GFRNN)method based on universal gravity was explored for identifying Pb contamination in mussels.[Results]The experimental results demonstrated that the proposed VIAVC-GFRNN method outperformed traditional algorithms such as K-nearest neighbor,fixed radius nearest neighbor,and support vector machine algorithms in detecting Pb contamination,while remaining unaffected by the imbalance ratio.The area under the receiver operation curve value of the VIAVC-GFRNN model reached 0.988 6,with a detection accuracy and geometric mean of 99.17%.[Conclusion]Near-infrared spectroscopy combined with pattern recognition methods has great potential for detecting Pd pollution in mussels.

near-infrared spectroscopymusselsheavy metal detectionunbalanced classification

姜微、刘忠艳、刘瑶、熊建芳、曾绍庚

展开 >

岭南师范学院计算机与智能教育学院,广东 湛江 524048

岭南师范学院电子与电气工程学院,广东 湛江 524048

近红外光谱 贻贝 重金属检测 不平衡分类

国家自然科学基金青年科学基金项目广东省科技创新战略专项资金竞争性项目岭南师范学院红树林生态系统智能监测创新团队项目

620051092023A01025

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(8)