首页|基于改进YOLOv5s的海水鱼种类识别

基于改进YOLOv5s的海水鱼种类识别

扫码查看
[目的]为提高不同种类海水鱼的识别准确率,提出一种改进YOLOv5s的海水鱼种类识别方法.[方法]采用K-means++算法对海水鱼的真实框进行聚类计算,获得与自建数据集更加匹配的锚框;用SIoU损失函数替换CIoU损失函数作为边界框回归算法,提高边界框回归精度与收敛速度;改进骨干网络的部分C3模块,将CA协调注意力机制融入C3模块中,在降低模型参数量的同时还能提高模型的识别精度与检测速度;最后,优化模型的路径聚合网络,以此增强网络的特征融合能力.[结果]改进后的Our-YOLOv5s模型在数据集中测得平均精度均值为98.4%、检测速度为64 s-1,分别比原模型提高了2.4个百分点,6 s-1.[结论]该模型能够满足对海水鱼的实时检测要求.
Marine fish species recognition based on improved YOLOv5s
[Objective]In order to improve the recognition accuracy of different kinds of marine fish,an improved YOLOv5s marine fish species recognition method was proposed.[Methods]K-means++algorithm was used to cluster the real frames of marine fish,and more matching anchor frames were obtained with the self built data set.CIoU Loss function was replaced by SIoU Loss function as the boundary box regression algorithm to improve the accuracy and rate of convergence of the boundary box regression.Improved some C3 modules of the backbone network,and integrated CA coordination attention mechanism into the C3 module,which improved the recognition accuracy and detection speed of the model while reducing the number of model parameters.Finally,optimized the path aggregation network of the model to enhance the feature fusion ability of the network.[Results]The experimental results showed that the improved Our-YOLOv5s model had a mAP of 98.4%and a detection speed of 64 s-1 in the dataset,which was 2.4%and 6 s-1 higher than the original model,respectively.[Conclusion]The model can meet the real-time detection requirements of marine fish.

marine fish detectionYOLOv5sfeature fusionattention mechanismloss function

张海峰、芦新春、冯博、杨进

展开 >

江苏海洋大学机械工程学院,江苏 连云港 222005

江苏海洋大学海洋工程学院,江苏 连云港 222005

海水鱼识别 YOLOv5s 特征融合 注意力机制 损失函数

连云港市重大技术攻关"揭榜挂帅"项目

CGJBGS2204

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(8)