首页|融合光谱和改进BAS-LSSVM的猪肉新鲜度快速检测方法

融合光谱和改进BAS-LSSVM的猪肉新鲜度快速检测方法

扫码查看
[目的]实现肉类新鲜度的准确、快速和无损检测.[方法]基于光谱采集系统提取光谱特征信息,提出一种结合改进天牛须搜索算法与最小二乘支持向量机的肉类新鲜度(TVB-N)快速无损检测方法.通过结合SG平滑滤波和标准正态变量进行数据预处理,通过结合窗口竞争性自适应重加权采样和迭代连续投影进行特征选择,通过改进的天牛须搜索算法优化最小二乘支持向量机的正则化参数和核函数参数,完成肉类新鲜度(TVB-N)快速无损检测方法.通过试验分析所提方法的性能.[结果]试验方法可实现猪肉新鲜度(TVB-N)的准确、快速和无损检测,具有较高的检测精度和效率,检测相关系数为0.978 1,均方根误差为0.302 1,平均检测时间为0.031 s.[结论]结合光谱检测和智能算法可以实现肉类新鲜度(TVB-N)的快速无损检测.
Rapid detection method for pork freshness using fusion spectroscopy and improved BAS-LSSVM
[Objective]To realize accurate,rapid,and non-destructive testing of meat freshness.[Methods]Extracting spectral feature information based on a spectral acquisition system,proposed a fast non-destructive detection method for meat freshness(TVB-N)by combining an improved beetle whisker search algorithm with least squares support vector machine.By combining SG smoothing filtering and standard normal variables for data preprocessing,combining window competitive adaptive reweighted sampling and iterative continuous projection for feature selection,regularization parameters and kernel parameters of Least-Square Support Vector Machine were optimized by the Improved Beetle Antennae Search Algorithm,a fast non-destructive detection method for meat freshness(TVB-N)was completed.Analyze the performance of the proposed method through experiments.[Results]The experimental method could achieve accurate,rapid,and non-destructive testing of pork freshness(TVB-N),with high detection accuracy and efficiency,the detection correlation coefficient was 0.978 1,the mean square error was 0.302 1,and the average detection time was 0.031 seconds.[Conclusion]A fast non-destructive testing method for meat freshness(TVB-N)can be achieved by combining spectral detection and intelligent algorithms.

porkfreshnessspectral acquisition systembeetle antennae search algorithmleast squares support vector machinerapid non-destructive testing

汪垚、任笑真

展开 >

河南工业贸易职业学院,河南 郑州 450053

河南工业大学,河南 郑州 450001

猪肉 新鲜度 光谱采集系统 天牛须搜索算法 最小二乘支持向量机 快速无损检测

河南省重点研发与推广专项(科技攻关)项目

232102210194

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(9)