首页|基于随机森林回归模型的小麦粉灰分含量快速测定

基于随机森林回归模型的小麦粉灰分含量快速测定

扫码查看
[目的]实现小麦粉灰分含量的快速精准测定.[方法]通过预处理小麦原料并深入分析磨粉时间和电导率等关键影响因素,将这些因素作为特征变量引入随机森林回归模型,构建小麦粉灰分含量测定模型.通过算术平均值计算得出最终测定结果,实现小麦粉灰分含量的快速测定.[结果]该方法与实际结果基本一致,测定误差低于0.01 g/100 g,且重复性波动差距低于0.01 g/100 g,平均测定时间为24 min.[结论]试验方法具有较高的测量精度和重复性,显著提升了测定效率.
Study on rapid determination method of ash content in wheat flour based on stochastic forest regression model
[Objective]To achieve rapid and accurate determination of ash content in wheat flour.[Methods]By preprocessing wheat raw materials and analyzing key influencing factors such as milling time and conductivity in depth,these factors were introduced as characteristic variables into a random forest regression model to construct a wheat flour ash content determination model.The final determination result was obtained by calculating the arithmetic mean,achieving rapid determination of ash content in wheat flour.[Results]The method was basically consistent with the actual results,with a measurement error of less than 0.01 g/100 g and a repeatability fluctuation difference of less than 0.01 g/100 g.The average measurement time was 24 minutes.[Conclusion]The experimental method has high measurement accuracy and repeatability,significantly improving the measurement efficiency.

rapid determinationwheat flourstochastic forest regression modelash contentinfluencing factors

刘艳群、肖付刚、陈彩虹

展开 >

河南工业贸易职业学院,河南 郑州 450000

许昌学院,河南 许昌 461000

漯河市产品质量检验检测中心(国家肉制品监督检验中心(河南)),河南 漯河 462000

快速测定 小麦粉 随机森林回归模型 灰分含量 影响因素

河南省科技攻关项目

242102321134

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(9)