首页|基于随机森林的原位质谱法快速鉴别铁棍山药真伪

基于随机森林的原位质谱法快速鉴别铁棍山药真伪

扫码查看
[目的]建立一种快速无损的铁棍山药真伪鉴别方法。[方法]在常温常压环境下,运用大气压化学电离质谱技术对不同产地的铁棍山药(TG)和非铁棍山药(FTG)化学成分进行检测,每种铁棍山药样品和非铁棍山药样品各采集200组数据,共获得3 600个质谱数据点,利用主成分分析(PCA)和随机森林(RF)算法对获得的一级质谱数据进行模式识别分析,建立铁棍山药与非铁棍山药真伪鉴别模型。[结果]通过HS-APCI-MS获得的铁棍山药样品与非铁棍山药样品的一级质谱图差异明显,根据主成分累计方差贡献图,前7个主成分的累计方差贡献率为85。63%(≥85%);当决策树数量为25时,训练集、检测集准确率均达到100%,所建立的铁棍山药原位质谱分析结合RF算法对铁棍山药的鉴别效果显著,RF的分类效果优于PCA。[结论]应用原位质谱分析技术结合RF算法可以快速无损鉴别铁棍山药真伪。
Rapid identification of the authenticity of iron rod yam by in-situ mass spectrometry based on random forest algorithm
[Objective]To establish a fast and nondestructive analysis method for identifying iron rod yam.[Methods]Atmospheric pressure chemical ionization mass spectrometry(APCI-MS)was employed to detect the chemical constituents of iron rod yam(TG)and non-iron rod yam(FTG)from different origins under ambient temperature and pressure,With 200 sets of data collected from each type of TG and FTG,and a total of 3 600 mass spectrometry data points were obtained.Subsequently,the initial level of the mass spectrometry data obtained was analyzed using Principal Component Analysis(PCA)and the random forest(RF)algorithm.Pattern recognition analysis established a model to differentiate between TG and FTG based on their chemical compositions.[Results]The difference between the first-level mass spectra obtained by HS-APCI-MS was obvious between TG samples and FTG samples.The cumulative variance contribution plot of the principal components showed that the first seven principal components accounted for 85.63%(≥85%)of the variance.The accuracy of the training set and detection set reached 100%when the number of decision trees was 25.HS-APCI-MS combined with RF algorithm had a significant identification effect on TG,and the classification effect of RF was superior to that of PCA.[Conclusion]Atmospheric pressure chemical ionization mass spectrometry,combined with the RF algorithm,can rapidly and non-destructively identify TG and FTG,providing a new technical method for authenticating TG.

iron rod yamatmospheric chemical ionization sourceprincipal component analysisrandom forest algorithmidentification

钟恒艳、陈春、欧阳永中、周林、郭伟清

展开 >

佛山大学,广东 佛山 528000

佛山职业技术学院,广东 佛山 528137

广东一方制药有限公司,广东 佛山 528244

有研(广东)新材料技术研究院,广东 佛山 528000

展开 >

铁棍山药 大气压化学电离源 主成分分析 随机森林算法 鉴别

2024

食品与机械
长沙理工大学

食品与机械

CSTPCD北大核心
影响因子:0.89
ISSN:1003-5788
年,卷(期):2024.40(11)