首页|基于激光雷达的钦州湾典型红树林生物量反演

基于激光雷达的钦州湾典型红树林生物量反演

扫码查看
试验区的红树林生物总量对于研究区的生态系统保护至关重要.以地面实测样地数据和激光雷达点云数据为基础,使用随机森林方法估算研究区红树林生物量,依据精度检验结果构建生物量估算模型,通过反演获得试验区红树林生物总量.结果表明:(1)研究区样地各样方的无瓣海桑的生物量介于 0.55 kg·m-2-13.57 kg·m-2,平均值为 5.40 kg·m-2.(2)采用随机森林模型对红树林生物量计算的训练集(R2=0.9516、RMSE=0.8142、rRMSE=0.1486),及测试集(R2=0.6598、RMSE=2.0276、rRMSE=0.3983),说明地表生物量估算模型计算的生物量与实测样地采样的数据计算的生物量基本吻合,随机森林算法拟合精度较高.(3)反演的研究区红树林生物总量为 459.18 Mg,平均生物量为 4.15 kg·m-2.树高较高、胸径较大的单木红树林主要分布在潮沟附近以及研究区中南部.
Biomass inversion of typical mangrove forests in Qinzhou Bay based on LiDAR
The total mangrove biomass in the test area is critical to the conservation of the ecosystem in the study area.In combination with the measured sample plot data and LiDAR point cloud data,random forest method was employed to estimate the mangrove biomass in the study area.A biomass estimation model was then built based on the subsequent accuracy test to invert the entire mangrove biomass in the test area.The results showed that:(1)The biomass of Sonneratia apetala in the sample plots of the study area ranged from 0.55 kg·m-2 to 13.57 kg·m-2,averaging 5.40 kg·m-2.(2)The training set obtained by calculating mangrove biomass through the random forest model was R2=0.9516,RMSE=0.8142,and rRMSE=0.1486;and the test set was R2=0.6598,RMSE=2.0276,and rRMSE=0.3983.These indicated that the biomass calculated by the surface biomass estimation model was basically consistent with that calculated based on the measured sample plot data,thereby verifying the accuracy of the random forest algorithm.(3)In the study area,the total mangroves biomass was 459.18 Mg,averaging 4.15 kg·m-2.The single-tree mangroves with higher heights and larger DBHs were mainly distributed near the tidal creek as well as the central and southern parts of the study area.

lidarmangrovesbiomassrandom forestQinzhou Bay

张振东、田义超、邓静雯、姚贵钊、李尹伶

展开 >

北部湾大学资源与环境学院, 钦州 535011

北部湾海洋发展研究中心, 北部湾大学, 钦州 535011

激光雷达 红树林 生物量 随机森林 钦州湾

国家自然科学基金广西壮族自治区高等学校人文社会科学重点研究基地北部湾海洋发展研究中心项目广西壮族自治区创新驱动发展专项广西基地和人才项目广西壮族自治区大学生创新创业训练计划

42261024AA181180382019AC200881707402429

2024

生态科学
广东省生态学会 暨南大学

生态科学

CSTPCD北大核心
影响因子:0.464
ISSN:1008-8873
年,卷(期):2024.43(1)
  • 23