光学遥感是获取宏观地表植被覆盖信息的重要手段,但常绿树种之间物候差异小,关于亚热带地区常绿林型的遥感识别研究相对较少.遥感林型识别存在尺度效应,从实际应用视角出发,常绿林型遥感识别的最优空间分辨率仍然不清楚.本研究以湖南省会同县为例,利用P1éiades(2 m)、RapidEye(5 m)、Landsat-8(15、30 m)4种光学遥感影像,结合光谱、纹理、植被覆盖度等特征变量与随机森林模型,探讨了3种典型亚热带常绿林型:杉木林(Chinese fir forest,CFF)、马尾松林(Masson pine forest,MPF)、常绿阔叶林(evergreen broadleaved forest,EBF)的最优遥感识别分辨率以及尺度效应问题.结果 表明:研究区地表覆盖分类精度随影像空间分辨率的降低呈现先降低后上升的变化趋势,在2m时具有最佳分类精度(Kappa=0.70,总精度=0.77).3种林型的识别精度随空间分辨率的上升均表现出先降低后上升的变化规律,识别率(rate of identification,RI)范围分别为:RICFF=68%~87%、RIMPF=55% ~ 84%、RIEBF=29%~74%.杉木林与马尾松林的漏分误差(omission error,OE)与错分误差(commission error,CE)低于常绿阔叶林(OECFF=0.26~0.46,CECFF=0.32~0.53;OEMPF =0.31~0.50, CEMPF =0.31~0.46;OEEBF=0.47 ~0.71, CEEBF=0.39 ~0.66).本研究证实了亚热带常绿林型的遥感识别存在明显的尺度效应,30 m分辨率的Landsat-8影像相比高分辨率遥感影像因具备更丰富的光谱信息而具有更高的识别精度.本研究表明,常绿林型的遥感识别不宜盲目追求高空间分辨率,需要综合考虑遥感传感器光谱配置与空间分辨率之间的内在权衡.