首页|滇中云南松林地表可燃物含水率预测模型

滇中云南松林地表可燃物含水率预测模型

扫码查看
云南松针叶富含油脂,防火期含水率低,是滇中地区林火主要地表可燃物。在2020年防火期持续采集滇中地区云南松林地表可燃物含水率数据,使用相关性分析、公因子方差、膨胀系数和多重预测回归模型,探究地形、气象、林分等因子与含水率的关系,利用离差标准化法调整模型系数及完成模型精度评价。结果表明:云南松林地表可燃物含水率影响因子排序为温度>湿度>风速>坡向>郁闭度>坡度>海拔>风向,坡向、林分郁闭度指标方差膨胀系数VIF>10,存在共线性;因此选择温度、湿度、风速、坡度、海拔构建含水率预测回归模型E1,k、s、g代表云南松枯枝、松针和小灌枯枝-枯草,Yk1、Ys1、Ys1平均拟合度为74。35%,平均误差率为32。06%,误差率偏高。以强相关(r>0。70)因子温度、湿度、风速为自变量重构含水率预测增强回归模型E2,其Yk2、Ys2、Yg2平均拟合度为83。99%,平均误差率为17。09%,其拟合度、误差率均优于E1。在E2基础上选择具有现实意义的弱相关性因子坡向、坡度、海拔、郁闭度为调整因子,并运用离差标准化法转化为系数,构建含水率预测系数校正回归模型E3,其Yk3、Ys3、Yg3平均拟合度89。72%,平均误差率为8。48%。E3精度优于E1、E2,其 Yk3、Ys3、Yg3拟合优度分别提升 9。69%、2。11%,4。84%、10。77%,8。41%、4。33%,误差率降低 15。65%、6。89%,11。24%、13。69%,18。01%、5。24%。增加校正系数可提高模型预测精度,同时模型因子易获取,便于林火管理者野外快捷、精准、实时预测滇中云南松林地表可燃物含水率,为林火防控提供技术支持。
Prediction model for surface fuel moisture in Pinus yunnanensis forest in central Yunnan
Needle litter of Pinus yunnanensis,the main surface fuel of wildfire in the central Yunnan Province,China,is highly flammable for its high oil content and low moisture.We monitored the moisture contents of surface fuels of P.yunnanensis forests in central Yunnan during the fire prevention period in 2020.Correlation analysis,common factor variance,variance inflation factor(VIF),and multiple prediction regression model were used to ex-plore the relationships between topographical,meteorological,and stand factors and the moisture contents of surface fuels.The model coefficients were adjusted by deviation standardization method,and the model accuracies were evaluated.The results showed that the factors affecting surface fuel moisture of P.yunnanensis forests in descending importance were temperature,humidity,wind speed,slope direction,canopy density,slope,elevation,and wind direction.The VIFs of slope direction and canopy density were more than 10,showing a high degree of collinearity.Therefore,regression model E1 was constructed using temperature,humidity,wind speed,slope,and elevation.The average goodness of fit for moisture of Yk1,Ys1,and Yg1 was 74.35%,and the average error rate was 32.06%;the symbols k,s,and g were branch litter of pine,needle litter of pine,and shrub twig litter and grass litter,respectively.An enhanced regression model E2 was reconstructed with temperature,humidity,and wind speed as independent variables,which showed significant correlations with the target(r>0.70).The average goodness of fit of Yk2,Ys2,and Yg2 was 83.99%,and the average error rate was 17.09%,which outperformed those of E1.Slope direction,slope,elevation,and canopy density,which showed insignificant contributions to surface fuel moisture,were selected as adjustment elements and converted as correction coefficients by the deviation standardization meth-od,to reconstruct the regression model E3.The average goodness of fit was 89.72%,and average error rate was 8.48%for Yk3,Ys3,Yg3.The accuracy of E3 outperformed E1 and E2,with the mean goodness of fit of Yk3,Ys3,Yg3 being improved by 9.69%vs 2.11%,4.84%vs 10.77%,and 8.41%vs 4.33%,and the error rates being reduced by 15.65%vs 6.89%,11.24%vs 13.69%,and 18.01%vs 5.24%,respectively.The added correction coefficients can improve the prediction accuracy of the model,and the model factors are easy to obtain.These findings are use-ful for forest fire prevention and management,and provide technical support for rapid,accurate,and real-time pre-diction of surface fuel moisture.

Pinus yunnanensissurface fuelmoistureprediction modelcoefficient adjustment

高仲亮、王何晨阳、魏建珩、曹宇飞、于闻天、王秋华、周汝良、韩丽、王锲、于寿福

展开 >

西南林业大学土木工程学院,昆明 650224

云南省森林灾害预警与控制重点试验室,昆明 650224

云南松 地表可燃物 含水率 预测模型 系数校正

国家自然科学基金国家自然科学基金云南省农业联合面上项目国家重点研发计划(十三五)云南省大学生创新项目

3236039631860214202101BD070001-0942020YFC1511601S20221067700

2024

生态学杂志
中国生态学学会

生态学杂志

CSTPCD北大核心
影响因子:1.439
ISSN:1000-4890
年,卷(期):2024.43(2)
  • 40