首页|基于随机森林算法的羌塘草原NDVI时空格局及预测模型

基于随机森林算法的羌塘草原NDVI时空格局及预测模型

The spatiotemporal pattern and prediction model of NDVI in Qiangtang grassland based on random forest algorithm

扫码查看
为揭示羌塘草原2001-2020年植被时空变化格局及其影响因素,并预测气候变化条件下羌塘草原植被可能的变化趋势,本研究基于MODIS NDVI数据以及温度、降水和风速数据,探究了羌塘草原植被覆盖变化与气象因子的关系;利用随机森林、支持向量机和随机梯度下降回归3种机器学习算法建立NDVI预测模型,筛选模拟精度最优模型,进行多情景下植被变化模拟.结果表明:2001-2020年羌塘草原NDVI呈现轻微增加趋势,增长率为0.0003 a-1.NDVI对温度的响应滞后3个月,降水滞后0~1个月,NDVI与风速呈负相关且无滞后.随机森林算法的模拟精度最高(Adjusted R2=0.958).未来植被覆盖度整体提升的情景是增温1.0℃、降水增加25%、风速降低25%.研究结果有助于预警植被退化问题,为气候变化背景下该区域植被生态保护提供科学依据.
This study aimed to reveal the spatiotemporal variations and the influencing factors of vegetation in the Qiangtang grassland during 2001-2020,and to predict the change trends of vegetation under climate change sce-narios.Based on the data of MODIS NDVI,temperature,precipitation,and wind speed,we explored the relation-ship between vegetation changes and meteorological factors.Furthermore,NDVI prediction models were establish with three machine learning algorithms of random forest,support vector machine,and random gradient descent re-gression.The optimal model with the best simulation accuracy was selected to simulate vegetation changes under multiple scenarios.We found that NDVI of the Qiangtang grassland showed a slight increasing trend with a growth rate of 0.0003 a-1 from 2001 to 2020.The response of NDVI to temperature lagged by 3 months,precipitation lagged by 0-1 months.NDVI was negatively correlated with wind speed without lag.The random forest algorithm had the highest simulation accuracy(Adjusted R2=0.958).The scenario for improvement of vegetation coverage in the future included 1.0 ℃ increase in temperature,25%increase in precipitation,and 25%decrease in wind speed.This study contributed to early warning of vegetation degradation,which would help vegetation conservation under climate change.

Qiangtang grasslandnormalized difference vegetation indexrandom forestmulti-scenario prediction

李彩琳、宋彦涛、张靖、乌云娜、孙磊

展开 >

大连民族大学环境与资源学院,辽宁大连 116600

西藏农牧学院动物科学学院,西藏林芝 860000

羌塘草原 归一化植被指数 随机森林 多情景模拟

大连民族大学-西藏农牧学院联合基金国家民委中青年英才培养计划(2022)中央高校基本科研业务费专项(2024)

DLMZ-NMXY2021002

2024

生态学杂志
中国生态学学会

生态学杂志

CSTPCD北大核心
影响因子:1.439
ISSN:1000-4890
年,卷(期):2024.43(6)
  • 31