首页|基于SVM-EnKF双向数据同化的地下水水位变化预测

基于SVM-EnKF双向数据同化的地下水水位变化预测

扫码查看
为了提高地下水水位变化的预测能力,掌握地下水水位动态变化,优化水资源管理,本文基于支持向量机(Support Vector Machine,SVM)和集合卡尔曼滤波(Ensemble Kalman Filtering,EnKF)技术,采用气象站点观测数据(气温、降水、太阳辐射、地表温度)和地下水水位观测数据,建立SVM及SVM-EnKF双向数据同化模式(Support Vector Machine-Ensemble Kalman Filtering Dual Data Assimilation,SVM-EnKF DDA),对未来1至3个月的地下水水位变化进行预测.结果表明:(1)SVM的预测能力受气象驱动要素的影响较大,仅适应于地下水水位变化与气象要素相关性高的站点.(2)在有限气象要素驱动下,SVM-EnKFDDA较SVM更适应于未来1至3个月地下水水位变化的预测.本研究为有限资料区域地下水水位动态变化预测提供了一种有效的双向数据同化技术.
Groundwater Level Changes Forecast Using Support Vector Machine and Ensemble Kalman Filtering Dual-Data Assimilation Technique
To improve the forecast ability of the groundwater level changes,recognize the dynamic change of groundwater level and improve the water resources management,this study applied support vector machines(SVM)and one Ensemble Kalman Filtering(EnKF)technique to construct the SVM and SVM-EnKF Dual-Data Assimilation(DDA)models to forecast the groundwater level changes at subsequent 1st to 3rd month using the in-situ meteorological variables(i.e.,air temperature,precipitation,solar radiation,ground temperature)and the groundwater level observation.The results indicate that:(1)the performance of SVM model is influenced by the meteorological forcing variables,which is only suit for the stations with strong relationship between groundwater level changes and meteorological variables.(2)the SVM-EnKF DDA model forced with limited meteorological forcing variables is more efficient than the SVM for the forecast of groundwater level changes at subsequent 1st to 3rd month.This study provides one efficient dual-data assimilation technique for the forecast of groundwater level changes at the regions with limited data.

groundwater level changessupport vector machinedata assimilationmachine learning

刘娣、余钟波、吕海深、鞠琴

展开 >

河海大学水灾害防御全国重点实验室,江苏南京 210024

河海大学全球变化与水循环国际合作联合实验室,江苏南京 210024

长江保护与绿色发展研究院,江苏南京 210024

地下水水位变化 支持向量机 数据同化 机器学习

国家自然科学基金国家自然科学基金国家自然科学基金水灾害防御全国重点实验室专项水灾害防御全国重点实验室专项

U22402174183075242071033520004412521013122

2023

水文
水利部水文局 水利部水利信息中心

水文

CSTPCDCSCD北大核心
影响因子:0.742
ISSN:1000-0852
年,卷(期):2023.43(6)
  • 6