首页|概念性水文模型与智能模型在中小河流洪水模拟中的比较研究

概念性水文模型与智能模型在中小河流洪水模拟中的比较研究

扫码查看
相较于大江大河的流域水文预报研究,中小流域的研究相对匮乏.以沅江河溪水文站以上流域为例,研究LSTM(Long Short-Term Memory)模型和新安江模型在场次洪水中的模拟效果.通过对比,新安江模型的整体模拟精度较高,洪量、洪峰、峰现时间的平均相对误差分别为9.39%、9.55%、1.6 h,确定性系数为0.73,综合合格率为100%,达到甲级精度标准;LSTM模型的模拟精度较低,洪量、洪峰、峰现时间的平均相对误差分别为11.76%、12.33%、2.3h,确定性系数为0.60,综合合格率为75%,达到乙级精度标准.结果表明,新安江模型和LSTM模型是中小河流洪水预报的有效方法,均可用于河溪流域的正式预报,且对于河溪流域,新安江模型的模拟精度比LSTM模型更高.
Comparative Study of Conceptual Hydrological Model and Intelligent Model in Flood Simulation of Small and Medium Rivers
Compared with the hydrological forecasting research of large river basins,the research of small and medium-sized river basins is relatively scarce.The simulation result of LSTM(Long Short-Term Memory)model and Xin'anjiang model in flood fore-casting was studied by taking the catchment area above the hydrological station of Hexi in Yuanjiang River as a case study.By comparison,the overall simulation accuracy of the Xin'anjiang model is higher,whose average relative errors of flood volume,flood peak and peak present time are 9.39%,9.55%and 1.6h,respectively.The deterministic coefficient is 0.73.The comprehen-sive qualified rate is 100%,which reaches the Class A accuracy standard.The simulation accuracy of LSTM model is lower,and the average relative errors of flood volume,flood peak and peak present time are 11.76%,12.33%and 2.3 h,respectively.The deterministic coefficient is 0.60,and the comprehensive qualified rate is 75%,reaching the Class B accuracy standard.The results show that the Xin'anjiang model and the LSTM model are effective methods to forecast the flood of small and medium rivers.Both can be used for the forecast,and the simulation accuracy of the Xin'anjiang model is higher than that of the LSTM model for the Hexi basin.

flood forecastsmall and medium-sized riversLSTM neural networkXin'anjiang Model

王越、李巧玲、肖杨

展开 >

河海大学水文水资源学院,江苏 南京 210098

五凌电力有限公司,湖南长沙 410004

洪水预报 中小河流 LSTM神经网络 新安江模型

2024

水文
水利部水文局 水利部水利信息中心

水文

CSTPCD北大核心
影响因子:0.742
ISSN:1000-0852
年,卷(期):2024.44(1)
  • 17