首页|基于优化BP神经网络的泾河输沙量预测研究

基于优化BP神经网络的泾河输沙量预测研究

扫码查看
为准确预测资料较少河流的输沙量,选取泾河支流茹河为研究对象,采用茹河上游开边水文站1980-2020年实测水文数据,建立基于3种激活函数的BP神经网络预测模型,在此基础上构建基于模拟退火(SA)算法优化的SA-BP神经网络预测模型,并进行了六个预测模型的对比.研究结果表明:BP神经网络和SA-BP神经网络模型均能较好预测茹河流域输沙量,但在只有径流资料的情况下,BP神经网络模型的预测精度较低;SA算法可以提高BP神经网络的预测精度,且基于ReLU激活函数的SA-BP神经网络的预测效果最佳,预测精度为0.86.该研究为资料较少河流输沙量准确预测提供了一种新方法.
Prediction of Sediment Discharge in Jinghe River Based on Optimized BP Neural Network
In order to accurately predict the sediment discharge of rivers with less data,Ruhe River,a tributary of Jinghe River,was selected as the research object.Based on the measured hydrological data of Kaibian hydrological station in the upper reaches of Ruhe River from 1980 to 2020,a BP neural network prediction model based on three activation functions was established.On this basis,a SA-BP neural network prediction model based on simulated annealing(SA)algorithm optimization was constructed,and the comparison of six prediction models was carried out.The results show that both BP neural network and SA-BP neural network model can better predict the sediment discharge in Ruhe River Basin,but in the case of only runoff data,the prediction accuracy of BP neural network model is low.The SA algorithm can improve the prediction accuracy of the BP neural network,and the SA-BP neural network based on the ReLU activation function has the best prediction effect,and the prediction accuracy is 0.86.This study provides a new method for accurate prediction of river sediment transport with less data.

BP neural networksimulated annealing algorithmactivation functionsediment discharge

杨文举、赵映东、闫宏华

展开 >

甘肃省水利厅讨赖河流域水资源利用中心,甘肃酒泉 735000

BP神经网络 模拟退火算法 激活函数 输沙量

2024

水文
水利部水文局 水利部水利信息中心

水文

CSTPCD北大核心
影响因子:0.742
ISSN:1000-0852
年,卷(期):2024.44(5)