首页|具非线性发病率随机SIQS传染病模型的渐近行为

具非线性发病率随机SIQS传染病模型的渐近行为

扫码查看
研究了一类具有非线性发病率的随机SIQS传染病模型,通过构造适当的Lyapunov函数并结合遍历论的相关结论,探讨该模型的解在其平衡点附近的动力学行为.研究结果表明:当R0≤1时,随机模型的解会沿着无病平衡点 (A/d,0,0)附近振动;当R0>1时,该模型在地方病平衡点附近存在遍历的不变分布.
The Asymptotic Behavior of a Stochastic SIQS Epidemic Model with Nonlinear Incidence
A general stochastic SIQS epidemic model with nonlinear incidence is investigated in this paper.By means of constructing appropriate Lyapunov functions and ergodicity theory,the asymptotically dynamical behaviors of a stochastic model around the positive equilibrium are considered.Our results show that if R0 ≤ 1,the solutions of the stochastic model fluctuate along the disease-free equilibrium (A/d,0,0),and if R0 > 1,the stochastic model admits an invariant distribution which is ergordic.

Nonlinear incidenceSIQSStochastic perturbationsErgodic property

魏凤英、蔡裕华、赵延辉

展开 >

福州大学数学与计算机科学学院,福建福州350116

非线性发病率 SIQS 随机扰动 遍历性

国家自然科学基金福建省自然科学基金

112010752010J01005

2016

生物数学学报
中国数学会生物数学学会

生物数学学报

ISSN:1001-9626
年,卷(期):2016.31(1)
  • 5
  • 1