首页|一类具有潜伏期的虫媒传染病模型的动力学分析

一类具有潜伏期的虫媒传染病模型的动力学分析

扫码查看
研究一类具有潜伏期的时滞虫媒传染病模型,确定了疾病是否流行的阈值.利用特征值理论分析了无病平衡点和地方病平衡点的稳定性,以时滞为参数,得到了系统在地方病平衡点产生Hopf分支的条件.数值模拟验证了理论研究的有效性.
Dynamic Analysis of a Vector-Born Disease Model with the Incubation Period
A vector-born disease model with the incubation period is invested.The threshold value determining whether the disease dies out is obtained,by using the theory and methods of characteristic value,the stabilities of disease-free and endemic equilibria are proved.Choosing the time delay as a bifurcation parameter,Hopf bifurcation for the model is investigated.Simulation results are presented to illustrate our main results.

Vector-born disease modelDelayStabilityHopf bifurcation

张晋珠、苏铁熊

展开 >

中北大学机电工程学院,山西,太原030051

太原工业学院理学系,山西太原030008

虫媒传染病模型 时滞 稳定性 Hopf分支

山西省自然科学基金

2012011002-2

2016

生物数学学报
中国数学会生物数学学会

生物数学学报

ISSN:1001-9626
年,卷(期):2016.(4)
  • 3
  • 11