首页|基于改进YOLOv5s的绝缘子缺陷检测算法研究

基于改进YOLOv5s的绝缘子缺陷检测算法研究

扫码查看
绝缘子缺陷检测是智能化电网发展中关键的一步,基于计算机视觉的绝缘子缺陷检测已经被大量应用于智能巡检中,选择YOLOv5s模型作为基础网络,在保证网络运行速度的前提下提升了检测精度.首先在主干特征提取网络中加入CBAM注意力模块,以增强模型的特征提取能力;其次在颈部结构采用BiFPN结构融合多尺度特征,减少特征丢失情况,以提升模型的特征融合能力;最后采用EIoU Loss作为网络回归损失的损失函数,解决了对航拍图像中各种尺度绝缘子敏感的问题,并提升网络的收敛速度.经过实验验证,在检测速度变化不大的情况下改进后的网络模型,平均精度均值(mAP)达到了 94.13%,召回率(Recall)达到了84.94%,较YOLOv5s网络模型相比提升了 5.71%和 14.57%,同时模型的体积减小为 13.5 MB,与其他改进模型相比,精度、召回率都有了明显提高,能够更好地满足实际应用的需求.
Research on insulator defect detection algorithm based on improved YOLOv5s
Insulator defect detection is a key step in the development of smart grids.At present,insula-tor defect detection based on computer vision has been widely used in intelligent inspections.This paper se-lects the YOLOv5s model as the basic network to improve detection accuracy while ensuring network operation speed.Firstly,the CBAM attention module is added to the backbone feature extraction network to enhance the feature extraction capability of the model;secondly,the BiFPN structure is used in the neck structure to fuse multi-scale features to reduce feature loss and improve the feature fusion capability of the model;finally EIoU Loss is used as the loss function of the network regression loss,which solves the problem of being sensitive to insulators of various scales in aerial images and improves the convergence speed of the network.Verified by experimental results,the improved network model has a mAP value of 94.13%and a Recall value of 84.94%when the detection speed does not change much,which are 5.71%and 14.57%higher than the YOLOv5s network model.At the same time,the model size is reduced to 13.5 MB.Compared with other improved mod-els,the precision and recall rate have been significantly improved,which can better meet the needs of practi-cal applications.

transmission lineinsulator defect detectionCBAM attention modulefeature fusionconvolutional neural network

刘超、李英娜、杨莉

展开 >

昆明理工大学 信息工程与自动化学院,云南 昆明 650504

云南电网有限责任公司 电力科学研究院,云南 昆明 650217

输电线路 绝缘子缺陷检测 CBAM注意力模块 特征融合 卷积神经网络

国家自然科学基金云南省科技厅基础研究专项

61962031202201AS070029

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(3)
  • 22