首页|基于改进YOLOv5的溺水人员检测

基于改进YOLOv5的溺水人员检测

扫码查看
针对情况复杂而无法实现人员全天全面监管的场所,在实时检测人员防溺水方面存在困难的问题,提出了一种融合统一注意力机制动态头的YOLOv5-Dy-GBCA模型.首先,通过在YOLOv5 的Head前引入动态检测头(DyHead),增强头部感知目标的空间位置、尺度和检测任务的能力;其次,将Backbone中的C3 模块替换成由GhostBottleneck结构和坐标注意力模块(CA)构成的幻影坐标注意力特征提取模块(GBCA),有效改善了因水上人员相互遮挡、人体在水面浮现体积较少而造成输入的特征语义信息不丰富,特征信息提取不足的问题;然后,引入加权双向特征金字塔网络(BiFPN),增强模型在不同尺度上的特征融合能力;最后,采用Focal-EIoU损失函数,改善难易样本不平衡对检测结果的影响.实验结果表明,YOLOv5-Dy-GBCA模型在维持了原模型检测速度的同时,取得了91.50%的平均精度(mAP),相较于传统算法和其他主流算法检测效果更优.
Drowning detection based on improved YOLOv5
To address the challenge of real-time monitoring of personnel for drowning prevention in places where the situation is complex and comprehensive supervision is not feasible,a YOLOv5-Dy-GBCA model with a unified attention mechanism and dynamic heads is proposed.Firstly,the study introduced a dy-namic detection head(DyHead)in front of the head of YOLOv5 so as to enhance the spatial position,scale,and detection capability of the head in perceiving targets.Secondly,the C3 module in Backbone is replaced with a GhostBottleneck Coordinate Attention feature extraction module(GBCA),which is composed of Ghost-Bottleneck structure and Coordinate Attention(CA),which effectively improved the problem of insufficient in-put semantic information and insufficient feature information extraction due to mutual occlusion of water per-sonnel and small volume of human body emerging on the water surface;Then,the weighted Bi-directional Fea-ture Pyramid Network(BiFPN)is introduced to improve the feature fusion ability of different scales of the model;Finally,the Focal-EIoU loss function is used to reduce the impact of sample imbalance on detection re-sults.The experimental results show that the YOLOv5-Dy-GBCA model maintains the detection speed of the o-riginal model while the mean average accuracy(mAP)reaches91.50%,which is better than traditional algo-rithms and other mainstream algorithms in terms of detection performance.

target detectiondrowning preventionDyHeadattention mechanismFocal-EIoU

刘向举、帅韬、蒋社想

展开 >

安徽理工大学 计算机科学与工程学院,安徽 淮南 232001

目标检测 防溺水 DyHead 注意力机制 Focal-EIoU

安徽省重点实验室项目

ZKSYS202204

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(3)
  • 22