首页|基于PCA-SVM的磨煤机在线智能诊断系统研究

基于PCA-SVM的磨煤机在线智能诊断系统研究

扫码查看
针对电厂燃煤机组磨煤机故障频发、人工监测实时性差等问题,提出了一种基于主成分分析法-支持向量机(PCA-SVM)的故障诊断方法.首先,构建基于PCA-SVM的磨煤机故障诊断模型,将采集的正常数据代入模型训练,得到数据集的特征值,并根据特征值进行智能诊断与预测.之后通过测试集对该模型进行准确率验证,实验表明,准确率可达99.6%,该方法在磨煤机智能诊断与预测中具有较高的准确性和可靠性.同时,在现场实际应用中通过在线更新参数实现了对磨煤机的在线诊断功能.
Research on on-line intelligent diagnosis system of coal mill based on PCA-SVM
In this paper,a fault diagnosis method based on PCA-SVM is proposed for the problems of frequent faults of coal mills in coal-fired power plants and poor real-time performance of manual monitoring.First,a fault diagnosis model of coal mills based on PCA-SVM is constructed,and the collected normal data is brought into the model training to obtain the characteristic values of the data set,and intelligent diagnosis and prediction are carried out according to the characteristic values.After that,the accuracy of the model is veri-fied by the test set,and the experimental verification shows that the accuracy rate can reach 99.6%.The method has high accuracy and reliability in the intelligent diagnosis and prediction of coal mills.At the same time,the online diagnosis function of coal mills is realized by updating parameters in the field.

coal millfault diagnosisprincipal component analysis(PCA)support vector machine(SVM)

胡欢

展开 >

上海宝山钢铁股份有限公司 能源环保部,上海 200941

磨煤机 故障诊断 主成分分析法 支持向量机

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(4)