首页|基于Swin Transformer的单图像去雨算法

基于Swin Transformer的单图像去雨算法

扫码查看
在雨中拍摄的图像通常都会包含很多雨痕,这些雨痕会遮盖图像中的细节信息,从而使得后续图像分类、目标检测等计算机视觉任务变的更加困难.因此,去除图像中的雨痕并恢复其中的细节信息至关重要.针对上述问题,提出了一种基于Swin Transformer的单图像去雨算法.首先通过最大颜色通道获取到近似的雨痕图,然后通过编码器-解码器结构进行多尺度特征提取和融合,进而得到更好的去雨图像.实验结果表明,该算法在 Rain1200 数据集和Rain1400 数据集上的结构相似性分别为 0.922 和 0.914,峰值信噪比分别为 33.28 dB 和31.31 dB,相比于目前主流单图像去雨算法,该算法在去除雨痕和恢复背景细节上的效果更优.
Single image rain removal algorithm based on Swin Transformer
Images captured in the rain usually contain many rainmarks,which can obscure the detailed information in the image,making subsequent computer vision tasks such as image classification and object de-tection more difficult.Therefore,it is crucial to remove rain marks from the image and restore the detailed in-formation within them.In response to the above issues,this article proposes a single image rain removal algo-rithm based on Swin Transformer.The algorithm first obtains an approximate rain trace map through the maxi-mum color channel;Then,multi-scale feature extraction and fusion are performed through an encoder decoder structure to obtain better rain removal images.The experimental results show that the structural similarity of the algorithm proposed in this paper on the Rain1200 dataset and Rain1400 dataset is 0.922 and 0.914,re-spectively,and the peak signal-to-noise ratio is 33.28 dB and 31.31 dB,respectively.Compared to the cur-rent mainstream single image rain removal algorithms,the algorithm proposed in this paper performs better in removing rain marks and restoring background details.

single image rain removalSwin Transformerself-attention

苏亚鹏、刘晓燕

展开 >

昆明理工大学 信息工程与自动化学院,云南 昆明 650504

单图像去雨 Swin Transformer 自注意力

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(4)