首页|基于PSO-GBDT的基桩缺陷智能识别与定位

基于PSO-GBDT的基桩缺陷智能识别与定位

扫码查看
低应变反射波法是实现基桩缺陷诊断与健康评估的重要手段.然而,目前该方法检测结果的判断仍采用人工方式进行,而人工进行结果的判断又不可避免会因缺陷波形不明显等因素导致误判或判断不准确等问题.为了解决这一问题,利用梯度提升决策树(GBDT)建立低应变反射波法检测结果与桩身缺陷位置的非线性关系,实现桩身缺陷的快速识别与定位,引入粒子群优化算法(PSO)优化模型关键参数,提高模型的精度与泛化能力.此外,利用核主成分分析(KPCA)算法对低应变反射波的多域特征降维,以此降低模型训练难度.最后,通过大量实测数据验证了该模型的可行性与准确性,结果表明,该模型具备基桩缺陷的快速识别与定位的能力.
Intelligent identification and localization of base pile defects based on PSO-GBDT
The low-strain reflected wave method is an important means to realize the diagnosis and health assessment of pile foundation defects.However,at present,the judgment of the detection results of this method is still carried out manually,and the judgment of the results carried out manually inevitably leads to misjudgment or inaccurate judgment and other problems as the defect waveform is not obvious.In order to solve this problem,the gradient boosting decision tree(GBDT)is used to establish a nonlinear relationship between the detection results of the low-strain reflected wave method and the location of the pile defects,and to realize the rapid identification and localization of the pile defects.And the particle swarm optimization(PSO)algorithm is introduced to optimize the key parameters of the model to improve the accuracy and gener-alization ability of the model.In addition,the kernel principal component analysis(KPCA)algorithm is used to downscale the multidomain features of the low-strain reflected wave,so as to reduce the difficulty of model training.Finally,the feasibility and accuracy of the model are verified by a large number of measured experi-mental data.The experimental results show that the model has the ability of rapid identification and localiza-tion of defects in foundation piles.

low-strain reflected wave methodfoundation pilesgradient boosting decision treeparti-cle swarm optimization algorithmkernel principal component analysis

余金煌、胡成龙、王铁强

展开 >

安徽建筑大学土木工程学院,安徽合肥 230601

河北省水利科学研究院,河北石家庄 050057

低应变反射波法 基桩 梯度提升决策树 粒子群优化算法 核主成分分析

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(5)