首页|基于动态图卷积神经网络和BiLSTM的情绪识别

基于动态图卷积神经网络和BiLSTM的情绪识别

扫码查看
针对情绪发生过程中电极通道间的空间依赖关系会随着时间推移而发生变化的问题,提出了一种基于动态图卷积神经网络-双向长短时记忆网络(DGCNN-BiLSTM)的模型用于情绪识别.首先,利用DGCNN通过训练神经网络动态学习不同电极通道之间的联系,从而动态更新优化邻接矩阵;其次,BiLSTM可以学习特征序列的前后时间相关性,从而提高网络情绪识别能力.在SEED和DEAP数据集上进行了实验,前者取得92.03%的最高平均准确率,后者在唤醒维度和效价维度实验中分别取得96.56%和95.22%的最高平均准确率.结果表明,模型有利于提升情绪识别准确率,与其他方法相比,情绪分类精度也有不同程度的提升.
Emotion recognition based on dynamical graph convolutional neural networks and BiLSTM
Due to the spatial dependencies among electrode channels evolving over time during the entire process of emotion occurrence,this paper proposes a model for emotion recognition based on dynamic graph con-volutional neural network-bidirectional long short-term memory(DGCNN-BiLSTM).Firstly,DGCNN dynamical-ly learns the connections between different electrode channels by training the neural network,thereby dynamical-ly updating and optimizing the adjacency matrix.Secondly,BiLSTM can learn the temporal correlations of fea-ture sequences,thereby enhancing the network's ability for emotion recognition.Experimental results on the SEED dataset and DEAP dataset show that the model achieves the highest average accuracy of 92.03%and the highest accuracy of 96.56%for arousal dimension and 95.22%for valence dimension,respectively.The results indicate that the model is beneficial for improving emotion recognition accuracy,and compared with other meth-ods,there is also an improvement in emotion classification accuracy to varying degrees.

graph convolutional neural networksdynamical graph convolutional neural networksbi-directional long short-term memory networkemotion recognitionadjacency matrix

郑进港、杨俊

展开 >

昆明理工大学信息工程与自动化学院,云南昆明 650504

图卷积神经网络 动态图卷积神经网络 双向长短时记忆网络 情绪识别 邻接矩阵

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(5)