首页|基于ESO的双馈风力发电机模型预测直接功率控制

基于ESO的双馈风力发电机模型预测直接功率控制

扫码查看
针对双馈风力发电机(DFIG)运行过程中因电机参数摄动以及电网电压突变等不确定因素对控制系统的影响,提出一种扩张状态观测器(ESO)与模型预测直接功率控制(MPDPC)相结合的控制策略.首先分析了传统MPDPC中存在的系统耦合项、模型误差及外部扰动等对控制系统的影响,为了减小此影响,应用ESO进行相关参数估计.在此基础上,结合模型预测控制理论建立了功率预测数学模型.在不同工况下进行了仿真实验并和传统MPDPC进行比较,结果表明所提控制策略具有较强的鲁棒性和抗干扰能力.
Model predictive direct power control of doubly-fed induction generator based on ESO
To address the impact of uncertainties such as motor parameter perturbations and sudden chan-ges in grid voltage on the control system during the operation of doubly-fed induction generator(DFIG),a con-trol strategy combining extended state observer(ESO)and model predictive direct power control(MPDPC)is proposed.Firstly,the effects that system coupling terms,model errors,and external perturbations present in the traditional MPDPC have on the control system are analyzed,and in order to reduce this effect,dilated ESO was applied for the estimation with relevant parameters.On this basis,a mathematical model of power predic-tion was established by combining model predictive control theory.Through simulation experiments under dif-ferent working conditions and comparison with traditional MPDPC,the results show that the proposed control strategy has strong robustness and anti-interference ability.

doubly-fed induction generator(DFIG)extended state observer(ESO)model predictive direct power control(MPDPC)robustness

王豪、董锋斌、张丽、贺超、白小靖

展开 >

陕西理工大学 电气工程学院,陕西 汉中 723000

中国电力工程顾问集团新能源有限公司西安分公司,陕西 西安 710032

双馈风力发电机 扩张状态观测器 模型预测直接功率控制 鲁棒性

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(6)