首页|基于改进SpectralNet的云南40米射电望远镜RFI聚类研究

基于改进SpectralNet的云南40米射电望远镜RFI聚类研究

扫码查看
为了在进行脉冲星观测受到严重射频干扰(RFI)污染问题时制定特定的缓解策略,提出了一种基于卷积自编码器和谱聚类的图像聚类模型CAE-SpectralNet.该模型自编码器部分自动从图像中提取关键特征,避免了手动操作的困难,而谱聚类则将特征空间中距离最近的点聚成簇,有助于揭示数据的内在结构信息.通过对云南天文台40 米射电望远镜采集的2 000张脉冲星时域和频域图像数据进行实验,结果表明,SpectralNet模型在改进自编码器结构之后,对比原始SpectralNet模型以及一些传统聚类算法在聚类内部指标上有明显提升,并且聚类结果初步实现了对RFI分类的目标.
RFI clustering study of Yunnan 40 meters radio telescope based on improved SpectralNet
To develop specific mitigation strategies for addressing the issue of severe radio frequency in-terference(RFI)contamination during pulsar observations,an image clustering model called CAE-Spectral-Net,based on autoencoders and spectral clustering,has been proposed.The autoencoder part of this model automatically extracts key features from images,avoiding the difficulties of manual operations.Spectral cluste-ring clusters the closest points in feature space,which helps to reveal the underlying structural information of the data.Experiments were performed on 2 000 pulsar time domain and frequency domain image data collected by the Yunnan Observatory's 40 meters radio telescope.The results show that after improving the structure of the autoencoder,the SpectralNet model significantly improves on the internal indicators of clustering compared to the original SpectralNet model and some traditional clustering algorithms.The clustering results preliminari-ly achieve the goal of RFI classification.

CAE-SpectralNet modelimage clusteringmorphological classification of RFI

贺方彤、梁波

展开 >

昆明理工大学 信息工程与自动化学院,云南 昆明 650504

CAE-SpectralNet模型 图像聚类 RFI的形态归类

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(6)