首页|基于随机森林与Bi-LSTM的5G网络切片攻击检测模型

基于随机森林与Bi-LSTM的5G网络切片攻击检测模型

扫码查看
针对5G网络切片中的DoS和DDoS攻击这一关键安全挑战,研究了一种基于双向长短期记忆网络(Bi-LSTM)的攻击检测模型.该研究在模拟的 5G切片平台上收集和分析攻击数据,揭示了现有方法在数据收集方面的不足,并在多个关键指标上展现了显著的相对增益.所提出的模型能够高效处理大规模数据集,并展现出快速的收敛速度.实验结果表明,该模型在检测准确率方面达到了 99%,显著优于现有方法.这一发现不仅证明了所提方案的先进性,也对提升5G网络切片的安全性具有重要的实际应用价值.
Research on 5G network slicing attack detection model based on random forest and Bi-LSTM
In addressing the key security challenges of denial of service(DoS)and distributed denial of service(DDoS)attacks in 5G network slicing,this study explores a detection model based on bidirectional long short-term memory networks(Bi-LSTM).The research involved collecting and analyzing attack data on a simulated 5G slicing platform,revealing inadequacies in data collection of existing methods and demonstrating significant relative gains across multiple key metrics.The proposed model efficiently processes large-scale datasets and shows rapid convergence speed.Experimental results indicate that the model achieves a detection accuracy rate of 99%,significantly surpassing existing methods.These findings not only prove the advanced nature of the proposed approach but also hold substantial practical application value in enhancing the security of 5G network slicing.

5G network slicingdenial of service attacksattack detection modelbidirectional long short-term memory networks(Bi-LSTM)data analysis

尹龙润、张智斌

展开 >

昆明理工大学 信息工程与自动化学院,云南 昆明 650504

5G网络切片 DoS/DDoS攻击 攻击检测模型 双向长短期记忆网络 数据分析

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(6)