首页|用于图像超分辨率的轻量化特征蒸馏注意力网络

用于图像超分辨率的轻量化特征蒸馏注意力网络

扫码查看
针对现有的图像超分辨率网络存在图像细节特征恢复能力较弱、参数量大、计算成本高的问题,提出了一种轻量化特征蒸馏注意力网络(LRFDAN).首先,设计了新颖的残差特征蒸馏模块进行有效特征提取;其次,利用蓝图可分离卷积替代标准卷积以减少计算和内存需求;最后,注意力机制被集成到模型中,进一步增强模型重构能力.所提出的模型在5 种基准测试数据集上进行性能验证,定量结果分析与视觉效果比较表明,与其他深度神经网络模型相比,LRFDAN在保持更好的性能和主观视觉效果的同时,大大减少了参数与计算量.进一步表明了所提出的模型在图像质量和计算效率方面的有效性.
Lightweight feature distillation attention network for image super-resolution
In response to the limitations of existing image super-resolution algorithms,which often struggle with weak image detail recovery and have high computational costs due to large parameter sizes,we propose a lightweight residual feature distillation attention network(LRFDAN).First,a novel residual feature distillation block is designed to effectively extract features.Second,blueprint separable convolutions are uti-lized to replace standard convolutions,thereby reducing computational and memory demands.Finally,an at-tention mechanism is integrated into the model to further enhance reconstruction capabilities.The proposed model is validated on five benchmark datasets,and quantitative analyses along with visual comparisons demon-strate that,compared to other deep neural network models,our network significantly reduces parameters and computational cost while maintaining superior performance and subjective visual quality.These results under-score the effectiveness of the proposed model in terms of both image quality and computational efficiency.

deep learningsingle image super resolutionlightweightingdeep feature distillationat-tention mechanism

常开荣、孙俊、胡明志

展开 >

昆明理工大学 信息工程与自动化学院,云南 昆明 650504

深度学习 单图像超分辨率重构 轻量化 深度特征蒸馏 注意力机制

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(6)