首页|泛延拓矩阵的Schur分解及其应用

泛延拓矩阵的Schur分解及其应用

扫码查看
基于泛延拓矩阵分解在数学和图像处理等领域中应用的重要性,利用矩阵分解理论导出了泛延拓矩阵的Schur分解、Hermite阵分解、正交对角分解和广义逆的优化计算公式.结果表明,此法在不降低数值精度的情况下减少了计算量与存储量,简化了数字版权保护领域中基于泛延拓阵Schur分解的彩色图像盲水印算法.
Schur factorization of universal extended matrix and its application
Based on the importance of universal extended matrix factorization in the fields of mathemat-ics and image processing,the optimal calculation formula of the Schur factorization,Hermite factorization,or-thogonal diagonal factorization and generalized inverse of universal extended matrix are derived by matrix de-composition theory.The results show that this method can reduce the computation and storage without reducing the numerical accuracy.It simplifies the color image blind watermarking algorithm based on universal extended matrix Schur factorization in digital copyright protection field.

universal extended matrixSchur factorizationgeneralized inversesignal processingdigital watermarking

何静、袁晖坪

展开 >

重庆财经学院 软件学院,重庆 401320

泛延拓矩阵 Schur分解 广义逆 信号处理 数字水印

2024

陕西理工大学学报(自然科学版)
陕西理工学院

陕西理工大学学报(自然科学版)

影响因子:0.425
ISSN:2096-3998
年,卷(期):2024.40(6)