首页|公路隧道智能调光控制影响因素分析

公路隧道智能调光控制影响因素分析

扫码查看
为研究不同因素对隧道入口段和中间段照明亮度智能调光控制的影响,利用BP神经网络建立网络模型进行分析.分析计算结果得出:隧道内车速超过60 km/h应采用智能调光控制;交通量对隧道各照明段的影响相对较小,随交通量增加大体呈线性增加;随洞外亮度增加入口段亮度大体呈线性增加,且增幅较大,说明洞外亮度对入口段亮度影响较大.
Influencing Factors of Intelligent Dimming Control in Highway Tunnels
This paper established a network model by BP neural network to study the influences of different factors on intelligent dimming control at the entrance and middle section of the tunnel.After analyzing the calculation result,it was concluded that when the driving speed in the tunnel is over 60 km/h,the intelligent dimming control should be used.The traffic volume had relatively less effect on each illumination section in the tunnel which generally increased linearly with the increase of the traffic volume.The brightness at the entrance significantly increased linearly with the increase of the brightness outside the tunnel,indicating that the influence of the brightness outside the tunnel was large on the brightness at the entrance.

highway tunnelintelligent dimming controlBP neural networkinfluencing factortraffic volumeoutside brightness

郭芳红

展开 >

山西省交通信息通信有限公司,山西 太原 030006

公路隧道 智能调光控制 BP神经网络 影响因素 交通量 洞外亮度

2024

山西交通科技
山西交通科技信息中心站

山西交通科技

影响因子:0.381
ISSN:1006-3528
年,卷(期):2024.(1)
  • 6