首页|基于绿色交通背景下的高速公路边坡光伏发电量预测研究

基于绿色交通背景下的高速公路边坡光伏发电量预测研究

扫码查看
边坡光伏发电作为一种环保、可持续的清洁能源技术,有助于绿色交通技术的发展.通过对实地采集的边坡光伏发电数据进行预处理,分析数据变化规律,使用箱形图初步估算数据中异常值的比例,进而使用孤立森林模型精准识别异常值,并使用LightGBM模型对异常值进行预测填充.同时,基于时间序列预测的思想建立GRU模型对未来1 h、2h、3h、l d、2d、3d的光伏发电量进行预测,并采用评估指标对模型进行评价,结果表明建立的GRU模型能够精准预测不同时长下的光伏发电量,建立的模型可为未来边坡光伏发电量预测奠定基础.
Prediction of Expressway Slope Photovoltaic Power Generation Based on Green Transportation
As an environmentally friendly,sustainable,and clean energy technology,slope photovoltaic power generation helps develop green transportation.In this paper,the field-collected data of slope photovoltaic power generation was preprocessed to analyze the data variation rules.The proportion of outliers was preliminary estimated by the box plot,and outliers were accurately identified by the isolated forest model,then predicted and filled by the LightGBM model.Besides,based on the concept of time series prediction,the GRU model was established to predict the photovoltaic power generation for various time intervals(1 hour,2 hours,3 hours,1 day,2 days,and 3 days),and the model was evaluated by the assessment indexes.The results showed that the established GRU model can accurately predict the photovoltaic power generation under different prediction intervals,providing a foundation for predicting slope photovoltaic power generation in the future.

photovoltaic power generationdata predictionisolated forest modelLightGBM modelGRU model

张健健

展开 >

山西省智慧交通研究院有限公司,山西 太原 030032

光伏发电 数据预测 孤立森林模型 LightGBM模型 GRU模型

2024

山西交通科技
山西交通科技信息中心站

山西交通科技

影响因子:0.381
ISSN:1006-3528
年,卷(期):2024.(4)