首页|基于机器学习的高速公路施工区实时事故风险模型

基于机器学习的高速公路施工区实时事故风险模型

扫码查看
近年来,随着机器学习方法的不断兴起与发展,机器学习方法在数据挖掘领域已经得到了广泛的应用,尤其在分类识别方面表现突出.设计了事故风险预测识别的建模思路,对原始数据进行预处理后,分别利用线性方法二元Logistic回归法和非线性方法卷积神经网络进行事故风险模型建立的实现,根据施工区交通流状态判断事故是否发生,即将施工区交通流分为正常通行状态和高危风险状态,并进行了两种方法的特点研究和建模效果对比.
A Machine Learning-Based Real-time Accident Risk Model for Highway Construction Zones
In recent years,as the machine learning method continuously rises and develops,it has been widely applied in the data mining industry,and it especially performs greatly in data classification and identification.This paper develops a modeling concept for predicting and identifying accident risks.After the preprocessing of raw data,the linear method,the binary Logistic regression,and the non-linear method,the convolutional neural network,are used to construct the accident risk model,respectively.It can determine whether an accident occurs or not according to the traffic flow state in construction zones,resulting in two traffic flow states,the normal passing state,and the high-risk state.This paper further studies and compares the characteristics and modeling effects of the two methods.

machine learningbinary logistic regressionnonlinear methodconvolutional neural networksaccident risk model

吴宏涛

展开 >

山西省智慧交通研究院有限公司,山西 太原 030032

山西省交通科技研发有限公司,山西 太原 030032

机器学习 二元Logistic回归法 非线性方法 卷积神经网络 事故风险模型

2024

山西交通科技
山西交通科技信息中心站

山西交通科技

影响因子:0.381
ISSN:1006-3528
年,卷(期):2024.(4)