首页|基于卷积神经网络的交通标志牌识别

基于卷积神经网络的交通标志牌识别

扫码查看
交通标志牌识别作为自动驾驶和智能交通领域的研究热点,对车联网环境下的交通安全至关重要.为克服传统交通标志牌识别方法面临的标志牌种类多、形状复杂以及精度受光照变化影响等技术难点,基于卷积神经网络构建交通标志牌识别模型,进而实现快速准确的交通标志牌识别.研究表明构建的卷积神经网络模型对于10种交通标志牌均能做出准确识别,且模型的泛化能力和鲁棒性均较好,研究可为未来交通安全和智能交通的发展奠定基础.
Traffic Sign Recognition Based on Convolutional Neural Network
As a research hotspot in automatic driving and intelligent transportation,traffic sign recognition is crucial for traffic safety in the car networking environment.To overcome the technical difficulties of conventional traffic sign recognition methods such as multiple types,complex shapes,and accuracy affected by changes in lighting,this paper constructs a traffic sign recognition model based on the convolutional neural network to realize the fast and accurate recognition of traffic signs.The research results show that the proposed convolutional neural network model can accurately recognize 10 types of traffic signs and has a good generalization ability and robustness.The research could lay the foundation for the development of traffic safety and intelligent transportation in the future.

convolutional neural networktraffic sign recognitionmaximum poolingautomatic driving

郝艳军

展开 >

山西省智慧交通研究院有限公司,山西 太原 030032

卷积神经网络 交通标志牌识别 最大池化 自动驾驶

2024

山西交通科技
山西交通科技信息中心站

山西交通科技

影响因子:0.381
ISSN:1006-3528
年,卷(期):2024.(5)