首页|(m,n)-凝聚环与FP(m,n)-投射模

(m,n)-凝聚环与FP(m,n)-投射模

扫码查看
在本文中,对任意的非负整数m,n,我们引入(m,n)-凝聚环与FP(m,n)-投射模的概念,证明:对任意的m,n ≥ 0,(FP(m,n)-Proj,(FPn-id)≤m)是完备余挠对,并且是遗传的当且仅当对任意的m≥0及n ≥ 1,环R是左n-凝聚环.此外,我们研究FP(m,n)-Proj覆盖与包络的存在性,得到若FP(m,n)-Proj关于纯商封闭,则对任意的n ≥ 2,FP(m,n)-Proj是覆盖.作为应用,我们得到每个R-模有满的FP(m,n)-Proj包络当且仅当R的左FP(m,n)-整体维数至多为1且FP(m,n)-Proj关于直积封闭.
(m,n)-coherent Rings and FP(m,n)-projective Modules
In this paper,we introduce the notions of(m,n)-coherent rings and FP(m,n)-projective modules for nonnegative integers m,n.We prove that(FP(m,n)-Proj,(FPn-id)≤m)is a complete cotorsion pair for any m,n ≥ 0 and it is hereditary if and only if the ring R is a left n-coherent ring for all m ≥ 0 and n ≥ 1.Moreover,we study the existence of FP(m,n)-Proj covers and envelopes and obtain that if FP(m,n)-Proj is closed under pure quotients,then FP(m,n)-Proj is covering for any n ≥ 2.As applications,we obtain that every R-module has an epic FP(m,n)-Proj-envelope if and only if the left FP(m,n)-global dimension of R is at most 1 and FP(m,n)-Proj is closed under direct products.

(m,n)-coherent ringFP(m,n)-projective moduleCoverEnvelopeCotorsion pair

谭玲玲、张艺霞、周潘岳

展开 >

江汉大学人工智能学院,武汉,430056

曲阜师范大学数学科学学院,曲阜,273165

长沙理工大学数学与统计学院,长沙,410114

(m,n)-凝聚环 FP(m,n)-投射模 覆盖 包络 余挠对

2024

数学理论与应用
湖南省数学学会

数学理论与应用

影响因子:0.281
ISSN:1006-8074
年,卷(期):2024.44(4)