首页|一类三维三次Kukles系统的中心与极限环

一类三维三次Kukles系统的中心与极限环

扫码查看
本文研究一类三维三次Kukles系统的中心和极限环.首先,通过计算并分析其复系统的前10个奇点量的公共零点,推导出原点在中心流形上成为中心的必要条件,进而用达布积分法证明其充分性;其次,通过计算和讨论前3个周期常数的公共零点,给出原点在中心流形上为等时中心的充要条件;最后,通过证明前10个奇点量的线性无关性,说明在适当的扰动下,系统可从原点处分支出10个小振幅极限环.这是三维三次系统从单个细焦点处分支出极限环个数的新下界.
Centers and Limit Cycles for a Class of Three-dimensional Cubic Kukles Systems
In this paper the centers and limit cycles for a class of three-dimensional cubic Kukles systems are investigated.First,by calculating and analyzing the common zeros of the first ten singular point quantities,the necessary conditions for the origin being a center on the center manifold are derived,and furthermore,the sufficiency of those conditions is proved using the Darboux integrating method.Then,by calculating and analyzing the common zeros of the first three period constants,the necessary and sufficient conditions for the origin being an isochronous center on the center manifold are given.Finally,by proving the linear independence of the first ten singular point quantities,it is demonstrated that the system can bifurcate ten small-amplitude limit cycles near the origin under a suitable perturbation,which is a new lower bound for the number of limit cycles around a weak focus in a three-dimensional cubic system.

Three-dimensional Kukles systemSingular point quantityLimit cycleCenterDarboux integrating method

梁坤坚、黄章菡、黄文韬

展开 >

广西师范大学数学与统计学院,桂林,541006

桂林航天工业学院传媒与艺术设计学院,桂林,541004

三维Kukles系统 奇点量 极限环 中心 达布积分法

2024

数学理论与应用
湖南省数学学会

数学理论与应用

影响因子:0.281
ISSN:1006-8074
年,卷(期):2024.44(4)