首页|不同压力下氢气超声速膨胀凝结特性

不同压力下氢气超声速膨胀凝结特性

Supersonic Expansion and Condensation Characteristics of Hydrogen Gas under Different Pressures

扫码查看
氢气液化所需温度远低于天然气,需要设置更繁琐的深冷环节,液化流程复杂、占地面积大、投资成本高.超声速膨胀液化是一种新兴的气体液化分离技术,具有流程密闭、节能环保、成本低等优势.因此,提出将超声速膨胀液化技术引入氢气液化领域,并且为探究其可行性,基于流体力学计算软件FLUENT中的SIMPLE算法和k-ω湍流模型,采用Gyarmathy液滴生长模型,研究了氢气在不同入口压力(1.05 MPa、1.10 MPa、1.15 MPa)条件下的超声速流动与凝结特性.结果表明,氢气高速膨胀引起的低温效应将使氢气自发凝结,导致在短距离内快速形成液滴,证实了超声速氢气液化技术的可行性;氢气入口压力的提高,可有效增加氢气在Laval喷管入口的过冷度,从而使得气体凝结起始位置前移,增大液滴粒径,提高Laval喷管液化效率.
Due to the fact that the temperature required for hydrogen liquefaction is much lower than that of natural gas,more cumbersome cryogenic processes need to be set up,resulting in complex processes,large floor space,and high investment costs.Supersonic expansion liquefaction technology is an emerging gas liquefaction and separation technology with the advantages of process confinement,energy saving and environmental protection,and low cost.Therefore,the paper proposes to introduce the supersonic expansion liquefaction technology into the field of hydrogen liquefaction.In order to investigate the feasibility of this technology in the field of hydrogen liquefaction,it adopts the Gyarmathy droplet growth model to study the supersonic flow and condensation characteristics of hydrogen gas under different inlet pressure conditions(1.05 MPa、1.10 MPa、1.15 MPa)based on the SIMPLE algorithm and k-ω turbulence model in FLUENT software.The results show that the low-temperature effect caused by the rapid expansion of hydrogen gas will cause spontaneous condensation of hydrogen gas,leading to the rapid formation of liquid droplets over a short distance,which confirmed the feasibility of supersonic hydrogen liquefaction technology.At the same time,the degree of supercooling of hydrogen at the Laval nozzle inlet can be effectively increased,which can make the gas condensation start position move forward,increase the droplet size,and improve the liquefaction efficiency of the Laval nozzle with the increase of hydrogen inlet pressure.

HydrogenLiquefactionSupersonicCondensation characteristicsLaval nozzle

边江、张泽瑜、甘宇、杨文、赵子源、曹学文

展开 >

中国石油大学(华东)储运与建筑工程学院,山东青岛 266580

中国石油西南油气田分公司输气管理处,成都 610215

国家石油天然气管网集团有限公司华南分公司,广州 510620

氢气 液化 超声速 凝结特性 Laval喷管

国家自然科学基金青年基金中国博士后科学基金

521040712022M723497

2024

油气与新能源
中国石油天然气股份有限公司规划总院

油气与新能源

影响因子:0.436
ISSN:2097-0021
年,卷(期):2024.36(2)
  • 30