首页|融合VMD和SABO-LSSVM的锂离子电池健康状态预测

融合VMD和SABO-LSSVM的锂离子电池健康状态预测

扫码查看
锂离子电池的健康状态(SOH)是反映锂离子电池健康管理的重要指标.为了解决锂离子电池SOH预测不准和最小二乘支持向量机(LSSVM)模型参数易陷入局部最优的问题,提出了一种结合变分模态分解(VMD)和减法平均优化(SABO)算法优化的LSSVM锂离子SOH预测方法.首先,从包含电池退化信息的充电和放电过程中提取潜在的健康因子(HI);其次,通过灰色关联分析法(GRA)分析HI和容量的相关性;然后,利用VMD将HI分解成一系列模态分量,将每个模态分量看作一个单独的子序列,分别输入到SABO优化的LSSVM中;最后,将每个子序列的预测结果叠加重构并进行误差评估.使用美国国家航空航天局(NASA)提供的 4 个电池数据进行实验验证并额外选择马里兰大学CALCE的电池数据验证本方法的适应性,实验结果表明,预测方法具有较高的预测精度,相较于VMD-LSSVM、LSSVM和VMD-SABO-SVM模型,均方根误差(RMSE)分别提高了 69.8%、86.9%和 78.1%.
Fusion of VMD and SABO-LSSVM for Lithium-ion Battery State of Health Prediction
The state of health(SOH)of lithium-ion batteries is an important indicator reflecting the health management of lithium-ion batteries.To solve the problems of inaccurate SOH prediction of lithium-ion batteries and that the parameters of the least squares support vector machine(LSSVM)model are prone to fall into local optimums,the paper proposes an LSSVM lithium-ion SOH prediction method by combining variational mode decomposition(VMD)and the subtraction average based optimizer(SABO)algorithm.It extracts the potential health indicator(HI)from the charging and discharging processes that contain battery degradation information firstly,analyzes the correlation between HI and capacity using the grey relation analysis(GRA)method secondly,decomposes the HI into a series of modal components by VMD and inputs each modal component regarded as a separate subsequence into the LSSVM of the SABO optimization respectively,and superimposes&reconstructs each subsequence of the predictions and evaluates errors finally.The experimental validation is carried out using four battery data provided by NASA and the battery data of CALCE from University of Maryland is additionally selected to verify the adaptability of the method.The results show that the method has high prediction accuracy and RMSE increases by 69.8%,86.9%,and 78.1%respectively compared with the VMD-LSSVM,LSSVM,and VMD-SABO-SVM models.

Lithium-ion batteryVariational modal decompositionLeast squares support vector machineSubtraction average based optimizerState of health

王康杰、崔方舒、史元浩、王博辉

展开 >

中北大学电气与控制工程学院,太原 030051

中北大学计算机科学与技术学院,太原 030051

西安交通大学网络空间安全学院,西安 710049

锂离子电池 变分模态分解 最小二乘支持向量机 减法平均优化 健康状态

2024

油气与新能源
中国石油天然气股份有限公司规划总院

油气与新能源

影响因子:0.436
ISSN:2097-0021
年,卷(期):2024.36(5)