首页|基于多源异构数据的天然气管道环焊缝质量智能诊断方法

基于多源异构数据的天然气管道环焊缝质量智能诊断方法

扫码查看
天然气管道环焊缝质量状态诊断主要依赖于人工对环焊缝数据进行分析后指导的逐段开挖验证方式,这一方法不仅导致运营成本高昂,且排查准确率和效率低下,无法满足管道安全高效运维的需求.利用高效的智能质量诊断方法来预测埋地天然气管道焊缝质量,开展针对性开挖复查工作,对确保焊接管段的服役安全具有重要的工程意义.因此,构建了一种人工智能方法对天然气管道环焊缝质量进行快速诊断及预测,为了提高模型的计算效率,使用方差选择法和相关系数图来选取了 15个环焊缝主要特征,包括管节长度、机组、对口形式、站间段等.基于随机森林方法建立了天然气管道环焊缝质量智能诊断模型,并使用贝叶斯优化器进行参数优化.采用未训练的工程数据对模型进行验证,并与支持向量机、决策树和K近邻算法进行性能对比.结果表明:利用随机森林模型对环焊缝工程数据进行质量诊断具有较高的准确率,可以为在役天然气管道环焊缝的开挖排查工作提供理论指导.
Intelligent Diagnosis Method for Girth Weld Quality of Natural Gas Pipeline Based on Multi-source Heterogeneous Data
The quality diagnosis of natural gas pipeline girth weld mainly relies on the segment-by-segment excavation verification method guided by the manual detailed analysis of girth weld data,leading to high operating costs and low accuracy & efficiency and can't meet the needs of safe and efficient operation and maintenance of modern pipelines.It is of great engineering significance to ensure the service safety of welded pipeline segments using efficient intelligent quality diagnosis methods to predict the quality of weld in buried natural gas pipelines and carrying out targeted excavation review work.The paper constructs an artificial intelligence method to quickly diagnose and predict the quality of natural gas pipeline girth welds as well as solve these above difficulties,uses the variance selection method and the correlation coefficient map to select 15 main features of the ring weld,including the length of the pipe section,the unit,the form of the counterpart,and the inter-station section to improve the computational efficiency of the model,establishes an intelligent diagnostic model for the quality of gas pipeline girth welds based on the random forest method,optimizes the parameters using a Bayesian optimizer,validates the model using untrained engineering data,and compares the performance with support vector machine,decision tree,and K-nearest neighbor algorithms.The results show that the quality diagnosis of girth weld engineering data using the random forest model has a high accuracy rate,and can provide theoretical guidance for the excavation and exclusion work of girth welds of in-service natural gas pipelines.

Natural gas pipelineGirth weld qualityIntelligent diagnosis methodMulti-source heterogeneous dataRandom ForestBayesian optimizer

王琳、关雪涛、魏一萱、毛志豪、轩恒、刘振华、刘江

展开 >

西南石油大学机电工程学院,成都 610500

中国石油管道局工程有限公司国际分公司,河北廊坊 065000

西南大学含弘学院,重庆 400715

国家管网集团西南管道有限责任公司,成都 610213

中国石油天然气股份有限公司天然气销售广西分公司,南宁 530000

展开 >

天然气管道 环焊缝质量 智能诊断方法 多源异构数据 随机森林 贝叶斯优化

2024

油气与新能源
中国石油天然气股份有限公司规划总院

油气与新能源

影响因子:0.436
ISSN:2097-0021
年,卷(期):2024.36(6)