首页|中国省域工业碳排放效率的空间马尔可夫链分析

中国省域工业碳排放效率的空间马尔可夫链分析

Spatial Markov chain analysis of industrial carbon emission efficiency in provinces of China

扫码查看
选取2010-2020年中国30个省份(除西藏、港澳台外)的面板数据,结合工业生产的特点,使用非期望SBM模型测算中国省域工业碳排放效率,结合莫兰指数、核密度、空间马尔可夫链模型对中国省域工业碳排放效率的分布及发展趋势进行分析解读.结果发现:样本期间,工业碳排放效率呈先降低后升高的走势;2013年起我国工业碳排放效率在省域空间中呈现显著的空间正相关性,工业碳排放效率的省域分布情况为分散-聚集-分散,地区差异增大有两极化趋势,且存在明显的时间滞后性和空间溢出效应.
The panel data of the 30 provinces,autonomous regions and municipalities(except Tibet,Hong Kong,Macao and Taiwan,hereinafter referred to as provinces)in China from 2010 to 2020 are selected,the characteristics of industrial production are combined,the unexpected SBM model is used to calculate the industrial carbon emission efficiency of the provinces in China,and the distribution of industrial carbon emission efficiency of the provinces in China and the development trend are analyzed and interpreted in combination with Moran index,kernel density,and spatial Markov chain model.The results shows that during the sample period,the industrial carbon emission efficiency has decreased first and then increased.Since 2013,industrial carbon emission efficiency has shown a significant positive spatial correlation in the provincial space.The provincial distribution of industrial carbon emission efficiency is decentralized-aggregated-decentralized.The regional difference increases with a trend of polarization,and there is an obvious time lag and spatial spillover effect.

carbon emission efficiencyspatial effectSBM-DEA model,kernel densityspatial Markov chain

徐伟、韩璐

展开 >

沈阳工业大学管理学院,辽宁沈阳 110870

碳排放效率 空间效应 SBM-DEA模型 核密度 空间马尔可夫链

辽宁省社会科学基金项目

L20BJY002

2024

沈阳工业大学学报(社会科学版)
沈阳工业大学

沈阳工业大学学报(社会科学版)

CHSSCD
影响因子:0.862
ISSN:1674-0823
年,卷(期):2024.17(1)
  • 2
  • 26