首页|农民工身份认同与城市居留意愿——基于主成分分析和随机森林算法的经验证据

农民工身份认同与城市居留意愿——基于主成分分析和随机森林算法的经验证据

Identity recognition of rural migrant workers and urban residency willingness:empirical evidence based on Principal Component Analysis and Random Forest Algorithm

扫码查看
农民工市民化是支撑新型城镇化与城乡融合发展进而推动共同富裕的关键,而城市居留意愿则是左右市民化进程的核心.厘清农民工城市居留意愿的影响因素,找到其中的核心因素,对科学制定我国人口和城镇化政策具有重要意义.基于2017年全国流动人口动态监测数据,以主成分分析法构建涵盖四维度的身份认同指数,然后使用随机森林算法在主体、客体、主客体交互的统一分析框架下评估农民工居留意愿的影响因素,并进行分区域的异质性分析.基准分析发现:农民工主体与流入地客体交互后产生的身份认同感是影响农民工居留意愿的核心因素,解释力达36.7%;民族和婚姻等主体特征是影响农民工居留意愿的重要因素,解释力分别为24.2%和20.3%;客体特征即流入地城市特征也对农民工居留意愿产生一定影响,解释力为18.8%.异质性分析发现:不同区域农民工居留意愿影响因素的差异主要体现在客体特征即流入地城市特征上,其中东部和中部较为相似,西部和东北较为相似.基于研究结论,在关注农民工主体特征,优化流入地客体特征,进而改善主客体交互体验以提升身份认同感方面提出政策建议.
Turning the rural migrant workers into citizens is pivotal in supporting the new urbanization and urban-rural integration,thereby fostering common prosperity,while their willingness to stay is the core for them to become citizens.It holds significant importance for the systematic formulation of population and urbanization policies in China to delineate the influencing factors of rural migrant workers'willingness to stay in cities,particularly to identify the core factors.Based on the 2017 China Migrants Dynamics Survey,Principal Component Analysis is used to construct an identity index spanning four dimensions.Subsequently,the Random Forest Algorithm is employed within a unified analytical framework of subject,object,and subject-object interaction,and the influencing factors are assessed of the rural migrant workers'willingness to stay and the subregional heterogeneity is analyzed.The baseline analysis reveals that the interaction-induced sense of indentity recognition between migrant worker subjects and the objects in the inflow areas is the core determinant of their willingness to stay,explaining 36.7%of the variance.Subjective characteristics such as ethnicity and marital status emerge as significant factors influencing rural migrant workers'willingness to stay,accounting for explanatory powers of 24.2%and 20.3%respectively.Moreover,object characteristics,namely the features of the inflow city,exert a moderate influence on rural migrant workers'willingness to stay,explaining 18.8%of the variance.Heterogeneity analysis uncovers that regional disparities in rural migrant workers'willingness to stay primarily stem from object characteristics,particularly the attributes of the inflow city,with greater similarities observed in the eastern and central regions,as well as in the western and northeastern regions.Based on these findings,targeted policy recommendations are provided in terms of focusing on the subject characteristics of migrant workers,optimizing the object characteristics of the inflow place,and then improving the subject-object interaction experience in order to enhance the sense of identity recognition.

common prosperityrural migrant workersidentity recognitionresidency willingnessPrincipal Component AnalysisRandom Forest Algorithm

展望、李晗冰

展开 >

中国社会科学院工业经济研究所,北京 100006

河南工业大学管理学院,河南郑州 450001

共同富裕 农民工 身份认同 居留意愿 主成分分析 随机森林算法

国家社会科学基金中国博士后科学基金面上项目中国社科院博士后创新工程项目

19ZDA0482023M73386522BSH187

2024

沈阳工业大学学报(社会科学版)
沈阳工业大学

沈阳工业大学学报(社会科学版)

CHSSCD
影响因子:0.862
ISSN:1674-0823
年,卷(期):2024.17(3)
  • 37