首页|联合PS-InSAR技术与LSTM模型的高速公路地表变形预测

联合PS-InSAR技术与LSTM模型的高速公路地表变形预测

扫码查看
为实现高速公路地表时序变形的大范围监测及高精度预测,文中采用PS-InSAR技术,获取研究路段的变形信息,分析其变形特征,构建基于长短时记忆(LSTM)网络的高速公路地表变形预测模型,对选取的特征点进行变形预测模拟,并与支持向量机(SVM)、卷积神经网络(CNN)、反向传播神经网络(BPNN)的预测效果进行对比.结果表明,PS-InSAR监测结果与水准测量结果误差小于5 mm;研究路段沿线累计沉降量范围为-76.615 5 mm至33.122 4 mm,路段周边呈现抬升趋势,路段中高填与深挖路段为主要沉降区;4种模型的预测误差都在2 mm以内,其中LSTM模型的均方误差RMSE与绝对平均误差MAE均小于1 mm,较其他3种模型更适用于高速公路地表变形预测;文中提出的联合PS-InSAR技术与LSTM模型的高速公路变形预测方法,可为高速公路变形的大范围监测及道路安全预警提供参考.
Surface Deformation Prediction of Expressway Combined with PS-InSAR Technology and LSTM Model
To achieve large-scale monitoring and high-precision prediction for time series deformation of expre-ssway,PS-InSAR technology was utilized to gather settlement data of a research segment,and its deformation characteristics was analyzed.A highway surface deformation prediction model based on long short-term mem-ory(LSTM)network was developed for deformation prediction at selected feature points,and its performance was compared with support vector machine(SVM),convolutional neural network(CNN),and back propaga-tion neural network(BPNN)models.Results demonstrate that the PS-InSAR monitoring aligns closely with leveling measurements,with errors under 5 mm.The study section showed a cumulative settlement ranging from 76.615 5 mm to 33.122 4 mm,with a rising trend around the section and a major settlement location in high-fill and deep-cut sections.All models achieved prediction errors within 2 mm,with the LSTM model's root mean square error(RMSE)and mean absolute error(MAE)being less than 1 mm,indicating its superi-or suitability for settlement prediction.The proposed deformation prediction method for highways with the combination of PS-InSAR technology and LSTM model can provide a promising framework for large-scale ex-pressway deformation monitoring and early road safety warnings.

expresswayPS-InSARLSTMdeformation prediction

蒋中楷、林智鹏、欧阳惠怡

展开 >

同济大学道路与交通工程教育部重点实验室 上海 201800

高速公路 PS-InSAR LSTM 变形预测

2024

交通科技
武汉理工大学

交通科技

影响因子:0.495
ISSN:1671-7570
年,卷(期):2024.(6)