首页|基于语义分割的老旧隧道表观病害智能检测研究

基于语义分割的老旧隧道表观病害智能检测研究

扫码查看
为提高老旧隧道病害分割效果,提出一种基于注意力机制和多重特征融合的老旧隧道表观病害检测算法ECA-Unet++.以Unet++网络为框架,通过多尺度特征融合有效提取病害特征,在解码部分施加注意力模块ECAnet,抑制无关通道权重,提升老旧隧道复杂背景下模型的抗干扰能力;进而以衬砌开裂、渗漏水、管片破损和衬砌脱落4种病害为对象,构建复杂的老旧隧道表观病害数据集.为验证所提算法性能,选用Unet、PSPnet、Deeplabv3+、Unet++4种经典网络作为对比.结果表明,ECA-Unet++模型在复杂背景下表现出良好的检测效果,在构建的复杂数据集上mIoU为55.33%,mPA为70.47%,适用于老旧隧道表观复合病害的准确检测.
Intelligent Detection of Old Tunnel Apparent Defects Via Semantic Segmentation
To improve the defect segmentation effect of old tunnels,an ECA-Unet++detection algo-rithm is proposed on basis of the attention mechanism and multi-feature fusion.Firstly,Unet++network is used as the framework to effectively extract defect features through multi-scale feature fu-sion.Then,the attention module ECAnet is applied in the decoding part to suppress the weight of ir-relevant channels and improve the anti-interference ability of the model in the complex background of old tunnels.Finally,a complex dataset of the apparent defects of the old tunnel is constructed by tak-ing the four defects of lining cracking,leaking,segment breakage and lining shedding as objects.To verify the performance of the proposed algorithm,four classical networks,Unet,PSPnet,Deeplabv3+and Unet++,are selected for comparison.The test results show that the ECA-Unet++model has a good detection effect under complex background.On the data set constructed in this paper,mI-oU is 55.33%and mPA is 70.47%,which is suitable for the accurate detection of apparent complex defects in old tunnels.

old tunnelsapparent defectsUnet++semantic segmentation

李鑫、熊震玲、李昕

展开 >

中国水利水电第八工程局有限公司 长沙 410004

中国水利水电建设工程咨询中南有限公司 长沙 410014

中南大学土木工程学院 长沙 410075

老旧隧道 表观病害 Unet++ 语义分割

2024

交通科技
武汉理工大学

交通科技

影响因子:0.495
ISSN:1671-7570
年,卷(期):2024.(6)