首页|基于智能算法的多品质多性质原油调合与优化

基于智能算法的多品质多性质原油调合与优化

扫码查看
针对炼油厂依靠传统经验调合原油难以满足加工原油质量要求和企业利润较低的问题,建立了基于原油相似度最大化和生产利润最大化的多目标优化数学模型,在比较5种鲁棒性较强的算法性能基础上,选择融合莱维飞行和随机游动策略的灰狼算法(LRGWO)对模型进行求解.结果表明:在LRGWO算法、灰狼算法(GWO)、第二代非支配排序遗传算法(NSGA-Ⅱ)、第三代非支配排序遗传算法(NSGA-Ⅲ)和粒子群算法(PSO)中,LRGWO算法所得最优解集的覆盖率、算法的整体性能最优;经过优化求解后,调合原油T1~T4与对应目标原油W1~W4的平均相似度达到95.82%,说明利用所建原油选择和调合模型可以得到与目标原油物性相近的调合原油;根据10种备选原油的价格,在最大采购量为175 000 t的前提下,通过生产利润最大化模型优化调合原油T1~T4的加工量依次为50 000,55 000,40 000,30 000 t,企业生产利润最大为3 358.19 万元.
BLENDING AND OPTIMIZATION OF CRUDE OIL WITH MULTI-QUALITY AND MULTI-PROPERTIES BASED ON INTELLIGENT ALGORITHM
Aiming at the problems of refineries relying on traditional experience to blend crude oil to meet the quality requirements of processed crude oil and the low profit of enterprises,a multi-objective optimization mathematical model based on the maximization of crude oil similarity and the maximization of production profit was established,and the Gray Wolf Algorithm,which combined the Levy Flight and Randomized Swimming Strategies(LRGWO),was chosen to solve the model after comparing the performance of five robust algorithms.The results showed that in LRGWO,Gray Wolf Algorithm(GWO),second-generation Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ),third-generation Non-dominated Sorting Genetic Algorithm(NSGA-Ⅲ)and Particle Swarm Algorithm(PSO),the coverage of the optimal solution set obtained from the LRGWO algorithm and the overall performance of algorithm were optimal.After optimization,the average similarity between the blended crude oils T1-T4 and the corresponding target crude oils W1-W4 reached 95.82%,which indicated that the blended crude oils with similar physical properties to the target crude oils could be obtained by using the constructed crude oil selection and blending model.According to the prices of the 10 kinds of crude,under the premise of the maximum purchasing quantity of 175 kt,the production profit maximization model optimizes the processing quantity of blended crude T1-T4 to be 50,55,40 and 30 kt,respectively.The maximum production profit of the enterprise is 33.5819 million Yuan.

crude oil blendingsimilarityproduction profitmulti-objective optimizationGray Wolf Optimization Algorithm

熊小琴、邢晓凯、薛润斌、李媛媛、徐宁

展开 >

中国石油大学(北京)机械与储运工程学院,北京 102200

中国石油大学(北京)克拉玛依校区工学院

新疆多介质管道安全输送重点试验室

新疆油田油气储运公司

展开 >

原油调合 相似度 生产利润 多目标优化 灰狼优化算法

新疆维吾尔自治区青年基金项目新疆天山创新团队"油气高效管输技术研究与应用创新团队"项目

2018D01B132022TSYCTD0002

2024

石油炼制与化工
中国石油化工股份有限公司石油化工科学研究院

石油炼制与化工

CSTPCD北大核心
影响因子:0.825
ISSN:1005-2399
年,卷(期):2024.55(10)