首页|c-MYC表达在结肠癌淋巴结转移风险预测模型中的价值

c-MYC表达在结肠癌淋巴结转移风险预测模型中的价值

Value of c-MYC expression in a lymph node metastasis risk prediction model for colon cancer

扫码查看
目的 研究细胞-骨髓细胞瘤病病毒癌基因(c-MYC)表达等病理因素与结肠癌淋巴结转移风险的相关性,构建风险预测模型,评估其预测价值.方法 收集2020年1月—2022年12月于蚌埠医科大学第一附属医院行结肠癌根治术的304例患者的病历资料,将所有患者按分层随机法分为模型组和验证组,各152例.分析淋巴结转移的影响因素,确定淋巴结转移的风险变量,作为预测模型输入节点,通过人工智能系统深度学习后分析结肠癌淋巴结转移的特点,并检测模型的有效性.结果 单因素分析显示,不同中性粒细胞与淋巴细胞比值、c-MYC、肿瘤形态、脉管癌栓、肿瘤长径、肿瘤分化程度结肠癌患者的淋巴结转移率差异有统计学意义.进一步行多因素分析发现,中性粒细胞与淋巴细胞比值、c-MYC、肿瘤形态、脉管癌栓、肿瘤长径、肿瘤分化程度是影响结肠癌淋巴结转移的相关风险变量.根据预测模型绘制ROC曲线,结果显示,验证组的AUC为0.745(95%CI:0.712~0.803),模型组的AUC为0.832(95%CI:0.796~0.875),提示风险预测模型能有效预测结肠癌患者的淋巴结转移风险.结论 中性粒细胞与淋巴细胞比值、c-MYC、肿瘤形态、脉管癌栓、肿瘤长径、肿瘤分化程度是影响结肠癌淋巴结转移的相关风险变量.本研究构建的风险预测模型能够较为准确地识别出结肠癌患者的淋巴结转移风险,具有临床应用前景.
Objective To examine the correlation between the expression of cellular-myelocytomatosis viral oncogene(c-MYC)and lymph node metastasis risk in colon cancer,develop a risk prediction model and evaluate its significance.Methods The medical records of 304 patients who underwent radical colon cancer surgery at the First Affiliated Hospital of Bengbu Medical University from January 2020 to December 2022 were collected.The patients were randomly divided into a model group and a validation group,each comprising 152 cases.We analyzed the factors influencing lymph node metastasis and identified the risk variables for input into the prediction model.The characteristics of colon cancer lymph node metastasis were then analyzed using an artificial intelligence system through deep learning.Finally,we assessed the effectiveness of the model.Results Univariate analysis showed that the neutrophil-to-lymphocyte ratio(NLR),c-MYC expression,tumor morphology,vascular cancer thrombus,tumor length,and tumor differentiation degree of 152 colon cancer patients in the model group were related to their lymph node metastasis.Further multivariate analysis identified the neutrophil-lymphocyte ratio,c-MYC expression,tumor morphology,vascular cancer thrombus,tumor length and diame-ter,and tumor differentiation degree as significant risk relevant variables for lymph node metastasis in colon cancer.The ROC curve based on the prediction model showed an AUC of 0.745(95%CI:0.712-0.803)in the validation group and 0.832(95%CI:0.796-0.875)in the model group,suggesting the effective predictive capability of the risk predic-tion model for lymph node metastasis in colon cancer patients.Conclusion The NLR,c-MYC expression,tumor mor-phology,vascular cancer thrombus,tumor length,and tumor differentiation were significant risk variables affecting lymph node metastasis in colon cancer.The risk prediction model constructed in this study demonstrates accurate identification of lymph node metastasis risk in colon cancer patients,holding promising clinical applications.

Colon cancerLymph node metastasisCellular-myelocytomatosis viral oncogenePrediction model

汪宇、陈芳芳、王超、郭涵、王苏杭、刘牧林

展开 >

蚌埠医科大学第一附属医院普外四科,安徽蚌埠 233004

结肠癌 淋巴结转移 细胞-骨髓细胞瘤病病毒癌基因 预测模型

安徽省高等学校自然科学研究项目蚌埠市科技创新指导类项目

2108085MH29120220133

2024

中华全科医学
中华预防医学会,安徽省全科医学会

中华全科医学

CSTPCD
影响因子:1.688
ISSN:1674-4152
年,卷(期):2024.22(3)
  • 16