首页|不同表面结构氧化铟催化CO2加氢制甲醇的反应机理

不同表面结构氧化铟催化CO2加氢制甲醇的反应机理

扫码查看
In2O3对CO2加氢合成甲醇具有较好的催化活性,为了进一步阐明In2O3的失活机理与甲醇合成的构效关系,选择了立方晶相In2O3的不同表面,采用密度泛函理论(DFT)研究了 H2还原无氧空位的In2O3完美表面生成氧空位的反应机理,模拟了 In2O3催化剂在氢气作用下失活形成In团簇的微观过程.选择抗烧结性较好的In2O3(111)阶梯表面,研究了 CO2的吸附活化以及甲醇生成的反应机理.结果表明:随着In2O3表面氧空位数目的增加,H2还原In2O3的反应能垒升高,H2解离成为氧空位生成的限速步骤;带有缺陷的In2O3(111)阶梯表面具有较好的反应活性和抗烧结性能;CO2加氢生成HCOO*的反应路径是甲醇合成的优势路线,其中,bi-HCOO*加氢生成bi-H2CO*并同时脱氧填补氧空位的过程为反应的限速步骤.
Reaction Mechanism of CO2 Hydrogenation to Methanol on Indium Oxide Catalyst With Different Surface Structures
In2O3 is a promising catalyst for CO2 hydrogenation to methanol,but the mechanism for the deactivation of In2O3 and the structure-activity relationship of methanol synthesis have not been fully elaborated.For this reason,different surfaces with distinct structures of the cubic phase In2O3 were constructed,and then the mechanism of oxygen vacancy formation on the perfect In2O3 surfaces was studied using the density functional theory(DFT).The micro process for deactivation of In2O3 catalyst from oxide form to metallic In clusters by H2 reduction was stimulated.The In2O3(111)Step surface with relatively good resistance to sintering was selected for subsequent study on the mechanisms of CO2 adsorption and activation as well as methanol formation.The results show that as the number of oxygen vacancies on the In2O3 surface increases,the energy barrier for the reduction of In2O3 by H2 increases,and H2 dissociation becomes the rate-limiting step for oxygen vacancy formation.The defective In2O3(111)Step surface was demonstrated to have good activity and resistance to sintering.The reaction pathway involving HCOO*intermediate formation is the dominant path for methanol synthesis,in which the hydrogenation of bi-HCOO*intermediate species to bi-H2CO*and simultaneously fill the oxygen vacancies by deoxidation is determined as the rate-limiting step.

CO2 hydrogenationmethanol synthesisIn2O3 catalystdensity functional theoryreaction mechanismcatalyst deactivation mechanism

聂小娃、于笑妍、郭新闻

展开 >

大连理工大学化工学院精细化工国家重点实验室智能材料化工前沿科学中心,辽宁大连 116024

CO2加氢 甲醇合成 In2O3催化剂 密度泛函理论 反应机理 催化剂失活机制

辽宁省自然科学基金面上项目

2023-MS-105

2024

石油学报(石油加工)
中国石油学会

石油学报(石油加工)

CSTPCD北大核心
影响因子:0.764
ISSN:1001-8719
年,卷(期):2024.40(5)