首页|MMC模式下2型糖尿病患者微血管并发症列线图预测模型的构建

MMC模式下2型糖尿病患者微血管并发症列线图预测模型的构建

扫码查看
目的 分析国家标准化代谢性疾病管理中心(metabolic management center,MMC)模式下2型糖尿病(type 2 diabetes mellitus,T2DM)患者微血管并发症的影响因素,并构建列线图预测模型.方法 选取2019年6月—2020年12月在唐山中心医院内分泌科就诊的T2DM患者为研究对象,纳入研究后通过MMC平台提供综合管理,所有患者均随访3年.收集T2DM患者基本资料以及视网膜病变、肾病、神经病变等微血管并发症合并情况.利用lasso回归和多因素logistic回归筛选T2DM患者微血管并发症的影响因素并构建列线图预测模型,并应用受试者工作特征(receiver operating characteristic,ROC)曲线、Bootstrap校准曲线和决策曲线评价列线图模型对T2DM患者微血管并发症的预测能力.结果 本研究共纳入300例T2DM患者,随访过程中失访14例,最终纳入286例.286例T2DM患者中共有微血管并发症123例(43.01%),多因素 logistic 回归结果显示,BMI(OR=1.167,95%CI:1.062~1.283)、糖尿病病程(OR=1.328,95%CI:1.130~1.562)、TBIL(OR=0.937,95%CI:0.899~0.977)、BUN(OR=1.300,95%CI:1.086~1.555)、收缩压(OR=1.029,95%CI:1.015~1.044)等是T2DM微血管并发症的影响因素(P<0.05).ROC曲线分析显示模型的曲线下面积为0.779(95%CI:0.726~0.826),特异度为0.767,敏感度为0.675,Hosmer-Lemeshow拟合优度检验结果也表明列线图模型的拟合程度较好(x2=10.386,P=0.239).决策曲线提示,当阈值概率为0.06~0.68范围内,使用列线图预测T2DM微血管并发症风险的净收益更高.结论 本研究基于5个常规预测指标构建了 MMC模式下T2DM患者微血管并发症的列线图预测模型,该模型具有较好的预测价值,研究结果还需进一步的外部验证.
Construction of a nomogram prediction model for microvascular complications in patients with type 2 diabetes mellitus under the Metabolic Management Center mode
Objective To analyze the factors affecting microvascular complications in patients with type 2 diabetes mellitus(T2DM)under the Metabolic Management Center(MMC)mode,and to construct a nomogram prediction model.Methods Patients with T2DM from Endocrinology Department of Tangshan Central Hospital from June 2019 to December 2020 were selected as the subjects.After the enrollment,they were provided with comprehensive management through the MMC platform,and all the patients were followed up for 3 years.The T2DM patients'basic data and status of coexistence of microvascular complications like retinopathy,nephropathy and neuropathy were collected.Lasso regression and multifactor logistic regression were used to screen the factors influencing microvascular complications in the T2DM patients,and construct a nomogram prediction model.The receiver operating characteristic(ROC)curve,Bootstrap calibration curve and decision curve were used to evaluate the prediction ability of the nomogram model for microvascular complications in the T2DM patients.Results A total of 300 T2DM patients were enrolled into this study,and 14 were lost to follow-up,eventually enrolling 286 patients.Among the 286 T2DM patients,123(43.01%)had microvascular complications.The results of multifactor logistic regression displayed that body mass index(OR=1.167,95%CI:1.062-1.283),diabetes duration(OR=1.328,95%CI:1.130-1.562),total bilirubin(OR=0.937,95%CI:0.899-0.977),blood urea nitrogen(OR=1.300,95%CI:1.086-1.555)and systolic blood pressure(OR=1.029,95%CI:1.015-1.044)were the factors influencing microvascular complications in the T2DM patients(P<0.05).The ROC curve analysis revealed that the area under the curve of the model was 0.779(95%CI:0.726-0.826),the specificity 0.767,and the sensitivity 0.675.The Hosmer-Lemeshow goodness-of-fit test also demonstrated that the nomogram model had a good fit(x2=10.386,P=0.239).The decision curve suggested that when the threshold probability was in the range of 0.06-0.68,the net benefit of using the nomogram to predict the risk of microvascular complications in the T2DM patients was higher.Conclusion Based on 5 conventional prediction indicators,this study constructs a nomogram model for forecasting microvascular complications in the T2DM patients under the MMC mode,and the model has a good predictive accuracy.The study results still need external validation.

standardized metabolic disease managementtype 2 diabetes mellitusmicrovascular complicationnomogram

宋江南、张丹丹、才蕊、田明杰

展开 >

唐山中心医院,河北 唐山 063000

标准化代谢性疾病管理 2型糖尿病 微血管并发症 列线图

河北省2021年度医学科学研究课题计划

20211274

2024

实用预防医学
中华预防医学会 湖南省预防医学会

实用预防医学

CSTPCD
影响因子:1.391
ISSN:1006-3110
年,卷(期):2024.31(6)